IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2124-d163827.html
   My bibliography  Save this article

Multi-Time Scale Rolling Economic Dispatch for Wind/Storage Power System Based on Forecast Error Feature Extraction

Author

Listed:
  • Li Han

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Rongchang Zhang

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Xuesong Wang

    (School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Yu Dong

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

This paper looks at the ability to cope with the uncertainty of wind power and reduce the impact of wind power forecast error (WPFE) on the operation and dispatch of power system. Therefore, several factors which are related to WPFE will be studied. By statistical analysis of the historical data, an indicator of real-time error based on these factors is obtained to estimate WPFE. Based on the real-time estimation of WPFE, a multi-time scale rolling dispatch model for wind/storage power system is established. In the real-time error compensation section of this model, the previous dispatch plan of thermal power unit is revised according to the estimation of WPFE. As the regulating capacity of thermal power unit within a short time period is limited, the estimation of WPFE is further compensated by using battery energy storage system. This can not only decrease the risk caused by the wind power uncertainty and lessen wind spillage, but also reduce the total cost. Thereby providing a new method to describe and model wind power uncertainty, and providing economic, safe and energy-saving dispatch plan for power system. The analysis in case study verifies the effectiveness of the proposed model.

Suggested Citation

  • Li Han & Rongchang Zhang & Xuesong Wang & Yu Dong, 2018. "Multi-Time Scale Rolling Economic Dispatch for Wind/Storage Power System Based on Forecast Error Feature Extraction," Energies, MDPI, vol. 11(8), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2124-:d:163827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lujano-Rojas, J.M. & Osório, G.J. & Matias, J.C.O. & Catalão, J.P.S., 2016. "A heuristic methodology to economic dispatch problem incorporating renewable power forecasting error and system reliability," Renewable Energy, Elsevier, vol. 87(P1), pages 731-743.
    2. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao & Tang, Bowen, 2017. "Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system," Applied Energy, Elsevier, vol. 190(C), pages 1126-1137.
    3. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    4. Alham, M.H. & Elshahed, M. & Ibrahim, Doaa Khalil & Abo El Zahab, Essam El Din, 2016. "A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management," Renewable Energy, Elsevier, vol. 96(PA), pages 800-811.
    5. Narimani, Hossein & Razavi, Seyed-Ehsan & Azizivahed, Ali & Naderi, Ehsan & Fathi, Mehdi & Ataei, Mohammad H. & Narimani, Mohammad Rasoul, 2018. "A multi-objective framework for multi-area economic emission dispatch," Energy, Elsevier, vol. 154(C), pages 126-142.
    6. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    7. Archer, C.L. & Simão, H.P. & Kempton, W. & Powell, W.B. & Dvorak, M.J., 2017. "The challenge of integrating offshore wind power in the U.S. electric grid. Part I: Wind forecast error," Renewable Energy, Elsevier, vol. 103(C), pages 346-360.
    8. Mohammad Rasoul Narimani & Maigha & Jhi-Young Joo & Mariesa Crow, 2017. "Multi-Objective Dynamic Economic Dispatch with Demand Side Management of Residential Loads and Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-18, May.
    9. Zhao, Xiaoli & Wu, Longli & Zhang, Sufang, 2013. "Joint environmental and economic power dispatch considering wind power integration: Empirical analysis from Liaoning Province of China," Renewable Energy, Elsevier, vol. 52(C), pages 260-265.
    10. Zhao, Xiaoli & Liu, Suwei & Yan, Fengguang & Yuan, Ziqian & Liu, Zhiwen, 2017. "Energy conservation, environmental and economic value of the wind power priority dispatch in China," Renewable Energy, Elsevier, vol. 111(C), pages 666-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pingping Yun & Yongfeng Ren & Yu Xue, 2018. "Energy-Storage Optimization Strategy for Reducing Wind Power Fluctuation via Markov Prediction and PSO Method," Energies, MDPI, vol. 11(12), pages 1-23, December.
    2. Long Cai & Jie Gu & Jinghuan Ma & Zhijian Jin, 2019. "Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees," Energies, MDPI, vol. 12(1), pages 1-19, January.
    3. Gejirifu De & Zhongfu Tan & Menglu Li & Liling Huang & Xueying Song, 2018. "Two-Stage Stochastic Optimization for the Strategic Bidding of a Generation Company Considering Wind Power Uncertainty," Energies, MDPI, vol. 11(12), pages 1-21, December.
    4. Weidong Li & Tie Li & Haixin Wang & Jian Dong & Yunlu Li & Dai Cui & Weichun Ge & Junyou Yang & Martin Onyeka Okoye, 2019. "Optimal Dispatch Model Considering Environmental Cost Based on Combined Heat and Power with Thermal Energy Storage and Demand Response," Energies, MDPI, vol. 12(5), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    2. Hao Chen & Chi Kong Chyong & Jia-Ning Kang & Yi-Ming Wei, 2018. "Economic dispatch in the electricity sector in China: potential benefits and challenges ahead," Working Papers EPRG 1819, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    4. Basu, M., 2021. "Fuel constrained dynamic economic dispatch with demand side management," Energy, Elsevier, vol. 223(C).
    5. Tang, Chenghui & Wang, Yishen & Xu, Jian & Sun, Yuanzhang & Zhang, Baosen, 2018. "Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations," Applied Energy, Elsevier, vol. 221(C), pages 348-357.
    6. Qingbin Yu & Yuliang Dong & Yanjun Du & Jiahai Yuan & Fang Fang, 2022. "Optimizing Operation Strategy in a Simulated High-Proportion Wind Power Wind–Coal Combined Base Load Power Generation System under Multiple Scenes," Energies, MDPI, vol. 15(21), pages 1-21, October.
    7. Li, M.S. & Lin, Z.J. & Ji, T.Y. & Wu, Q.H., 2018. "Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula," Applied Energy, Elsevier, vol. 226(C), pages 967-978.
    8. Jin, Jingliang & Zhou, Peng & Li, Chenyu & Bai, Yang & Wen, Qinglan, 2020. "Optimization of power dispatching strategies integrating management attitudes with low carbon factors," Renewable Energy, Elsevier, vol. 155(C), pages 555-568.
    9. Wei, Yi-Ming & Chen, Hao & Chyong, Chi Kong & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun, 2018. "Economic dispatch savings in the coal-fired power sector: An empirical study of China," Energy Economics, Elsevier, vol. 74(C), pages 330-342.
    10. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    11. Tim Felling & Björn Felten & Paul Osinski & Christoph Weber, 2023. "Assessing Improved Price Zones in Europe: Flow-Based Market Coupling in Central Western Europe in Focus," The Energy Journal, , vol. 44(6), pages 71-112, November.
    12. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    13. Osório, G.J. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources," Energy, Elsevier, vol. 82(C), pages 949-959.
    14. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    15. Sward, J.A. & Ault, T.R. & Zhang, K.M., 2023. "Spatial biases revealed by LiDAR in a multiphysics WRF ensemble designed for offshore wind," Energy, Elsevier, vol. 262(PA).
    16. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    17. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    18. Katrin Trepper & Michael Bucksteeg & Christoph Weber, 2013. "An integrated approach to model redispatch and to assess potential benefits from market splitting in Germany," EWL Working Papers 1319, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Apr 2014.
    19. Gokturk Poyrazoglu & HyungSeon Oh, 2019. "Co-optimization of Transmission Maintenance Scheduling and Production Cost Minimization," Energies, MDPI, vol. 12(15), pages 1-18, July.
    20. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2124-:d:163827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.