IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3527-d191423.html
   My bibliography  Save this article

Two-Stage Stochastic Optimization for the Strategic Bidding of a Generation Company Considering Wind Power Uncertainty

Author

Listed:
  • Gejirifu De

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Zhongfu Tan

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China
    School of Economics and Management, Yan’an University, Yan’an 716000, China)

  • Menglu Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Liling Huang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Xueying Song

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

Abstract

With the deregulation of electricity market, generation companies must take part in strategic bidding by offering its bidding quantity and bidding price in a day-ahead electricity wholesale market to sell their electricity. This paper studies the strategic bidding of a generation company with thermal power units and wind farms. This company is assumed to be a price-maker, which indicates that its installed capacity is high enough to affect the market-clearing price in the electricity wholesale market. The relationship between the bidding quantity of the generation company and market-clearing price is then studied. The uncertainty of wind power is considered and modeled through a set of discrete scenarios. A scenario-based two-stage stochastic bidding model is then provided. In the first stage, the decision-maker determines the bidding quantity in each time period. In the second stage, the decision-maker optimizes the unit commitment in each wind power scenario based on the bidding quantity in the first stage. The proposed two-stage stochastic optimization model is an NP-hard problem with high dimensions. To tackle the problem of “curses-of-dimensionality” caused by the coupling scenarios and improve the computation efficiency, a modified Benders decomposition algorithm is used to solve the model. The computational results show the following: (1) When wind power uncertainty is considered, generation companies prefer higher bidding quantities since the loss of wind power curtailment is much higher than the cost of additional power purchases in the current policy environment. (2) The wind power volatility has a strong negative effect on generation companies. The higher the power volatility is, the lower the profits, the bidding quantities, and the wind power curtailment of generation companies are. (3) The thermal power units play an important role in dealing with the wind power uncertainty in the strategic bidding problem, by shaving peak and filling valley probabilistic scheduling.

Suggested Citation

  • Gejirifu De & Zhongfu Tan & Menglu Li & Liling Huang & Xueying Song, 2018. "Two-Stage Stochastic Optimization for the Strategic Bidding of a Generation Company Considering Wind Power Uncertainty," Energies, MDPI, vol. 11(12), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3527-:d:191423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3527/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    2. Ji, Bin & Yuan, Xiaohui & Chen, Zhihuan & Tian, Hao, 2014. "Improved gravitational search algorithm for unit commitment considering uncertainty of wind power," Energy, Elsevier, vol. 67(C), pages 52-62.
    3. Li Han & Rongchang Zhang & Xuesong Wang & Yu Dong, 2018. "Multi-Time Scale Rolling Economic Dispatch for Wind/Storage Power System Based on Forecast Error Feature Extraction," Energies, MDPI, vol. 11(8), pages 1-27, August.
    4. James Bushnell, 2003. "A Mixed Complementarity Model of Hydrothermal Electricity Competition in the Western United States," Operations Research, INFORMS, vol. 51(1), pages 80-93, February.
    5. Suresh K. Damodaran & T. K. Sunil Kumar, 2018. "Hydro-Thermal-Wind Generation Scheduling Considering Economic and Environmental Factors Using Heuristic Algorithms," Energies, MDPI, vol. 11(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Alvarenga & Hubert Herbaux & Laurent Linguet, 2023. "On the Added Value of State-of-the-Art Probabilistic Forecasting Methods Applied to the Optimal Scheduling of a PV Power Plant with Batteries," Energies, MDPI, vol. 16(18), pages 1-24, September.
    2. Jing Wu & Zhongfu Tan & Keke Wang & Yi Liang & Jinghan Zhou, 2021. "Research on Multi-Objective Optimization Model for Hybrid Energy System Considering Combination of Wind Power and Energy Storage," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    3. Heng Yang & Ziliang Jin & Jianhua Wang & Yong Zhao & Hejia Wang & Weihua Xiao, 2019. "Data-Driven Stochastic Scheduling for Energy Integrated Systems," Energies, MDPI, vol. 12(12), pages 1-21, June.
    4. Lejeune, Miguel A. & Dehghanian, Payman & Ma, Wenbo, 2024. "Profit-based unit commitment models with price-responsive decision-dependent uncertainty," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1052-1064.
    5. Li, Wanying & Dong, Fugui & Ji, Zhengsen & Xia, Meijuan, 2023. "Analysis of the compound differential evolution game of new energy manufacturers’ two-stage market behavior under the weight of consumption responsibility," Energy, Elsevier, vol. 264(C).
    6. Gejirifu De & Xinlei Wang & Xueqin Tian & Tong Xu & Zhongfu Tan, 2022. "A Collaborative Optimization Model for Integrated Energy System Considering Multi-Load Demand Response," Energies, MDPI, vol. 15(6), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massrur, Hamid Reza & Niknam, Taher & Aghaei, Jamshid & Shafie-khah, Miadreza & Catalão, João P.S., 2018. "A stochastic mid-term scheduling for integrated wind-thermal systems using self-adaptive optimization approach: A comparative study," Energy, Elsevier, vol. 155(C), pages 552-564.
    2. Liu, Weifeng & Zhu, Feilin & Zhao, Tongtiegang & Wang, Hao & Lei, Xiaohui & Zhong, Ping-an & Fthenakis, Vasilis, 2020. "Optimal stochastic scheduling of hydropower-based compensation for combined wind and photovoltaic power outputs," Applied Energy, Elsevier, vol. 276(C).
    3. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    4. Chernyavs’ka, Liliya & Gullì, Francesco, 2007. "Interaction of carbon and electricity prices under imperfect competition," MPRA Paper 5866, University Library of Munich, Germany.
    5. Megy, Camille & Massol, Olivier, 2023. "Is Power-to-Gas always beneficial? The implications of ownership structure," Energy Economics, Elsevier, vol. 128(C).
    6. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    7. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    8. Yuan, Xiaohui & Chen, Zhihuan & Yuan, Yanbin & Huang, Yuehua, 2015. "Design of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method," Energy, Elsevier, vol. 93(P1), pages 173-187.
    9. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    10. C. Robert Clark & Andrew Leach, 2007. "The Potential for Electricity Market Restructuring in Quebec," Canadian Public Policy, University of Toronto Press, vol. 33(1), pages 1-20, March.
    11. Trüby, Johannes, 2013. "Strategic behaviour in international metallurgical coal markets," Energy Economics, Elsevier, vol. 36(C), pages 147-157.
    12. Bai, Yang & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Xie, Le, 2015. "A decomposition method for network-constrained unit commitment with AC power flow constraints," Energy, Elsevier, vol. 88(C), pages 595-603.
    13. Michele Fioretti & Jorge Tamayo, 2021. "Saving for a Dry Day: Coal, Dams, and the Energy Transition," Working Papers hal-03389152, HAL.
    14. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    15. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.
    16. Robles, Jack, 2016. "Infinite horizon hydroelectricity games," Working Paper Series 5075, Victoria University of Wellington, School of Economics and Finance.
    17. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    18. Schulze, Tim & McKinnon, Ken, 2016. "The value of stochastic programming in day-ahead and intra-day generation unit commitment," Energy, Elsevier, vol. 101(C), pages 592-605.
    19. Lynch, Muireann Á. & Nolan, Sheila & Devine, Mel T. & O’Malley, Mark, 2019. "The impacts of demand response participation in capacity markets," Applied Energy, Elsevier, vol. 250(C), pages 444-451.
    20. Finn R. Førsund, 2015. "Hydropower Economics," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4899-7519-5, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3527-:d:191423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.