IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1957-d120297.html
   My bibliography  Save this article

Asynchronous Fault Location in Transmission Lines Considering Accurate Variation of the Ground-Mode Traveling Wave Velocity

Author

Listed:
  • Rui Liang

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Zhi Yang

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Nan Peng

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Chenglei Liu

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Firuz Zare

    (Power and Energy Group, University of Queensland, Brisbane, QLD 4072, Australia)

Abstract

This paper proposes a grounding fault location method in transmission lines based on time difference of arrival (TDOA) of ground-mode and aerial-mode traveling waves (TWs). The frequency-dependent characteristics of transmission lines cause different frequencies to have different attenuations and phase lags of different frequency components in traveling waves, which leads to the change of TWs velocities with different propagation distances. Due to these different propagation paths, the wave velocity variations of ground-mode should be considered as a main variable while the velocity of aerial-mode can be seen as a constant factor. A quadratic function that can illustrate the tendency of variation of ground-mode wave velocity is proposed by considering the relation between the wave velocity and fault distance. The least squares method is used to solve the quadratic function of different lines. Combining the quadratic formula and the incident TWs of each mode detected at both terminals of the line, a novel fault location method is proposed. First, according to the maximum and minimum ground-mode velocities, a fault scope can be acquired. Then, more accurate fault scopes and ground-mode velocities can be obtained by iteration computation. Finally, an accurate fault position is acquired when the fault scope is sufficiently small. PSCAD/EMTDC software is used to conduct fault simulations in order to verify the feasibility and accuracy of the method.

Suggested Citation

  • Rui Liang & Zhi Yang & Nan Peng & Chenglei Liu & Firuz Zare, 2017. "Asynchronous Fault Location in Transmission Lines Considering Accurate Variation of the Ground-Mode Traveling Wave Velocity," Energies, MDPI, vol. 10(12), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1957-:d:120297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pu Zhao & Qing Chen & Kongming Sun & Chuanxin Xi, 2017. "A Current Frequency Component-Based Fault-Location Method for Voltage-Source Converter-Based High-Voltage Direct Current (VSC-HVDC) Cables Using the S Transform," Energies, MDPI, vol. 10(8), pages 1-15, July.
    2. Shimin Xue & Jie Lian & Jinlong Qi & Boyang Fan, 2017. "Pole-to-Ground Fault Analysis and Fast Protection Scheme for HVDC Based on Overhead Transmission Lines," Energies, MDPI, vol. 10(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susana Martín Arroyo & Miguel García-Gracia & Antonio Montañés, 2019. "The Half-Sine Method: A New Accurate Location Method Based on Wavelet Transform for Transmission-Line Protection from Single-Ended Measurements," Energies, MDPI, vol. 12(17), pages 1-15, August.
    2. Dazhi Wang & Yi Ning & Cuiling Zhang, 2018. "An Effective Ground Fault Location Scheme Using Unsynchronized Data for Multi-Terminal Lines," Energies, MDPI, vol. 11(11), pages 1-16, October.
    3. Hamid Mirshekali & Rahman Dashti & Karsten Handrup & Hamid Reza Shaker, 2021. "Real Fault Location in a Distribution Network Using Smart Feeder Meter Data," Energies, MDPI, vol. 14(11), pages 1-16, June.
    4. Yi Ning & Dazhi Wang & Yunlu Li & Haixin Zhang, 2018. "Location of Faulty Section and Faults in Hybrid Multi-Terminal Lines Based on Traveling Wave Methods," Energies, MDPI, vol. 11(5), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyu Pei & Guangfu Tang & Shengmei Zhang, 2018. "A Novel Pilot Protection Principle Based on Modulus Traveling-Wave Currents for Voltage-Sourced Converter Based High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(9), pages 1-20, September.
    2. Piotr Jankowski & Janusz Mindykowski, 2018. "Study on the Hazard Limitation of Hybrid Circuit Breaker Actuator Operation," Energies, MDPI, vol. 11(2), pages 1-14, February.
    3. Pulin Cao & Hongchun Shu & Bo Yang & Na An & Dalin Qiu & Weiye Teng & Jun Dong, 2018. "Voltage Distribution–Based Fault Location for Half-Wavelength Transmission Line with Large-Scale Wind Power Integration in China," Energies, MDPI, vol. 11(3), pages 1-22, March.
    4. Lingtong Jiang & Qing Chen & Wudi Huang & Lei Wang & Yu Zeng & Pu Zhao, 2018. "Pilot Protection Based on Amplitude of Directional Travelling Wave for Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(8), pages 1-15, August.
    5. Yu Zeng & Guibin Zou & Xiuyan Wei & Chenjun Sun & Lingtong Jiang, 2018. "A Novel Protection and Location Scheme for Pole-to-Pole Fault in MMC-MVDC Distribution Grid," Energies, MDPI, vol. 11(8), pages 1-17, August.
    6. Xiangyu Zheng & Rong Jia & Linling Gong & Guangru Zhang & Xiangyu Pei, 2019. "An Optimized Coordination Strategy between Line Main Protection and Hybrid DC Breakers for VSC-Based DC Grids Using Overhead Transmission Lines," Energies, MDPI, vol. 12(8), pages 1-13, April.
    7. Yongchun Yang & Xiaodan Wang & Jingjing Luo & Jie Duan & Yajing Gao & Hong Li & Xiangning Xiao, 2017. "Multi-Objective Coordinated Planning of Distributed Generation and AC/DC Hybrid Distribution Networks Based on a Multi-Scenario Technique Considering Timing Characteristics," Energies, MDPI, vol. 10(12), pages 1-29, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1957-:d:120297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.