IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9552-d1005580.html
   My bibliography  Save this article

Protection of Multi-Terminal HVDC Grids: A Comprehensive Review

Author

Listed:
  • Mohamed Radwan

    (Electrical and Computer Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada)

  • Sahar Pirooz Azad

    (Electrical and Computer Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada)

Abstract

Multi-terminal HVDC grids facilitate the integration of various renewable resources from distant locations; in addition, they enhance the reliability and stability of the grid. Protection is one of the major obstacles in realizing reliable and secure multi-terminal HVDC grids. This paper presents a comprehensive review of the existing protection schemes for multi-terminal HVDC grids. First, DC fault current stages are demonstrated; in addition, fault analysis studies and the existing fault current calculation methods are reviewed. Then, HVDC grid protection requirements including multi-vendor interoperability conditions are extensively discussed. Furthermore, primary protection algorithms are classified into single- and double-ended schemes, and a detailed comparison between each category is presented such that the distinctive algorithms from each group are highlighted. Moreover, the recent DC reclosing schemes are reviewed highlighting their role in enhancing grid stability and ensuring supply continuity. Finally, available standards for HVDC protection systems alongside their design considerations and procedures are thoroughly outlined. This paper focuses on the recently proposed methods to design reliable protection schemes for multi-terminal HVDC grids and highlights the main advantages and disadvantages associated with them; thus, it offers a beneficial guide for researchers in the HVDC protection field.

Suggested Citation

  • Mohamed Radwan & Sahar Pirooz Azad, 2022. "Protection of Multi-Terminal HVDC Grids: A Comprehensive Review," Energies, MDPI, vol. 15(24), pages 1-37, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9552-:d:1005580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Van Hertem, Dirk & Ghandhari, Mehrdad, 2010. "Multi-terminal VSC HVDC for the European supergrid: Obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3156-3163, December.
    2. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    3. Li, Jianwei & Yang, Qingqing & Mu, Hao & Le Blond, Simon & He, Hongwen, 2018. "A new fault detection and fault location method for multi-terminal high voltage direct current of offshore wind farm," Applied Energy, Elsevier, vol. 220(C), pages 13-20.
    4. Munif Nazmus Sakib & Sahar Pirooz Azad & Mehrdad Kazerani, 2022. "A Critical Review of Modular Multilevel Converter Configurations and Submodule Topologies from DC Fault Blocking and Ride-Through Capabilities Viewpoints for HVDC Applications," Energies, MDPI, vol. 15(11), pages 1-32, June.
    5. Lingtong Jiang & Qing Chen & Wudi Huang & Lei Wang & Yu Zeng & Pu Zhao, 2018. "Pilot Protection Based on Amplitude of Directional Travelling Wave for Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahebkar Farkhani, Jalal & Çelik, Özgür & Ma, Kaiqi & Bak, Claus Leth & Chen, Zhe, 2024. "A comprehensive review of potential protection methods for VSC multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perez-Molina, M.J. & Larruskain, D.M. & Eguia Lopez, P. & Buigues, G. & Valverde, V., 2021. "Review of protection systems for multi-terminal high voltage direct current grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    3. Navid Bayati & Mehdi Savaghebi, 2021. "Protection Systems for DC Shipboard Microgrids," Energies, MDPI, vol. 14(17), pages 1-20, August.
    4. Md Shafiul Alam & Mohammad Ali Yousef Abido, 2017. "Fault Ride-through Capability Enhancement of Voltage Source Converter-High Voltage Direct Current Systems with Bridge Type Fault Current Limiters," Energies, MDPI, vol. 10(11), pages 1-19, November.
    5. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    6. Kalair, A. & Abas, N. & Khan, N., 2016. "Comparative study of HVAC and HVDC transmission systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1653-1675.
    7. Munif Nazmus Sakib & Sahar Pirooz Azad & Mehrdad Kazerani, 2022. "Fast DC Fault Current Suppression and Fault Ride-Through in Full-Bridge MMCs via Reverse SM Capacitor Discharge," Energies, MDPI, vol. 15(13), pages 1-23, June.
    8. Sajadi, A. & Strezoski, L. & Clark, K. & Prica, M. & Loparo, K.A., 2018. "Transmission system protection screening for integration of offshore wind power plants," Renewable Energy, Elsevier, vol. 125(C), pages 225-233.
    9. Pei, Wei & Chen, Yanning & Sheng, Kun & Deng, Wei & Du, Yan & Qi, Zhiping & Kong, Li, 2015. "Temporal-spatial analysis and improvement measures of Chinese power system for wind power curtailment problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 148-168.
    10. Haipeng Xie & Zhaohong Bie & Yanling Lin & Chao Zheng, 2017. "A Hybrid Reliability Evaluation Method for Meshed VSC-HVDC Grids," Energies, MDPI, vol. 10(7), pages 1-17, July.
    11. Arcia-Garibaldi, Guadalupe & Cruz-Romero, Pedro & Gómez-Expósito, Antonio, 2018. "Future power transmission: Visions, technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 285-301.
    12. Liang, Jinping & Zhang, Ke & Al-Durra, Ahmed & Zhou, Daming, 2020. "A novel fault diagnostic method in power converters for wind power generation system," Applied Energy, Elsevier, vol. 266(C).
    13. Rouzbehi, Kumars & Candela, J. Ignacio & Gharehpetian, Gevork B. & Harnefors, Lennart & Luna, Alvaro & Rodriguez, Pedro, 2017. "Multiterminal DC grids: Operating analogies to AC power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 886-895.
    14. Ardelean, Mircea & Minnebo, Philip, 2023. "The suitability of seas and shores for building submarine power interconnections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    15. Ke Guo & Qiang Liu & Xinze Xi & Mingxuan Mao & Yihao Wan & Hao Wu, 2020. "Coordinated Control Strategy of a Combined Converter in a Photovoltaic DC Boost Collection System under Partial Shading Conditions," Energies, MDPI, vol. 13(2), pages 1-18, January.
    16. Torriti, Jacopo, 2012. "Demand Side Management for the European Supergrid: Occupancy variances of European single-person households," Energy Policy, Elsevier, vol. 44(C), pages 199-206.
    17. De Prada Gil, Mikel & Domínguez-García, J.L. & Díaz-González, F. & Aragüés-Peñalba, M. & Gomis-Bellmunt, Oriol, 2015. "Feasibility analysis of offshore wind power plants with DC collection grid," Renewable Energy, Elsevier, vol. 78(C), pages 467-477.
    18. Domínguez-García, José Luis & Rogers, Daniel J. & Ugalde-Loo, Carlos E. & Liang, Jun & Gomis-Bellmunt, Oriol, 2012. "Effect of non-standard operating frequencies on the economic cost of offshore AC networks," Renewable Energy, Elsevier, vol. 44(C), pages 267-280.
    19. Javier Renedo & Aurelio García-Cerrada & Luis Rouco & Lukas Sigrist, 2019. "Coordinated Control in VSC-HVDC Multi-Terminal Systems to Improve Transient Stability: The Impact of Communication Latency," Energies, MDPI, vol. 12(19), pages 1-32, September.
    20. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9552-:d:1005580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.