IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p493-d133465.html
   My bibliography  Save this article

Analyzing and Forecasting Electrical Load Consumption in Healthcare Buildings

Author

Listed:
  • Rodolfo Gordillo-Orquera

    (Departamento de Eléctrica y Electrónica, Universidad de las Fuerzas Armadas—ESPE, 171-5-231B Sangolquí, Ecuador
    Department of Signal Theory and Communications, Rey Juan Carlos University, 28943 Fuenlabrada, Spain)

  • Luis Miguel Lopez-Ramos

    (Department of Signal Theory and Communications, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
    Wisenet Signal Processing & Wireless Networks laboratory, University of Agder, 4876 Grimstad, Norway)

  • Sergio Muñoz-Romero

    (Department of Signal Theory and Communications, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
    Center for Computational Simulation, Universidad Politécnica de Madrid; Boadilla, 28223 Madrid, Spain)

  • Paz Iglesias-Casarrubios

    (Hospital Universitario de Fuenlabrada, 28492 Fuenlabrada, Spain)

  • Diego Arcos-Avilés

    (Departamento de Eléctrica y Electrónica, Universidad de las Fuerzas Armadas—ESPE, 171-5-231B Sangolquí, Ecuador)

  • Antonio G. Marques

    (Department of Signal Theory and Communications, Rey Juan Carlos University, 28943 Fuenlabrada, Spain)

  • José Luis Rojo-Álvarez

    (Department of Signal Theory and Communications, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
    Wisenet Signal Processing & Wireless Networks laboratory, University of Agder, 4876 Grimstad, Norway)

Abstract

Healthcare buildings exhibit a different electrical load predictability depending on their size and nature. Large hospitals behave similarly to small cities, whereas primary care centers are expected to have different consumption dynamics. In this work, we jointly analyze the electrical load predictability of a large hospital and that of its associated primary care center. An unsupervised load forecasting scheme using combined classic methods of principal component analysis (PCA) and autoregressive (AR) modeling, as well as a supervised scheme using orthonormal partial least squares (OPLS), are proposed. Both methods reduce the dimensionality of the data to create an efficient and low-complexity data representation and eliminate noise subspaces. Because the former method tended to underestimate the load and the latter tended to overestimate it in the large hospital, we also propose a convex combination of both to further reduce the forecasting error. The analysis of data from 7 years in the hospital and 3 years in the primary care center shows that the proposed low-complexity dynamic models are flexible enough to predict both types of consumption at practical accuracy levels.

Suggested Citation

  • Rodolfo Gordillo-Orquera & Luis Miguel Lopez-Ramos & Sergio Muñoz-Romero & Paz Iglesias-Casarrubios & Diego Arcos-Avilés & Antonio G. Marques & José Luis Rojo-Álvarez, 2018. "Analyzing and Forecasting Electrical Load Consumption in Healthcare Buildings," Energies, MDPI, vol. 11(3), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:493-:d:133465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
    2. George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
    3. Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
    4. Yan Hong Chen & Wei-Chiang Hong & Wen Shen & Ning Ning Huang, 2016. "Electric Load Forecasting Based on a Least Squares Support Vector Machine with Fuzzy Time Series and Global Harmony Search Algorithm," Energies, MDPI, vol. 9(2), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodolfo Gordillo-Orquera & Sergio Muñoz-Romero & Diego Arcos-Aviles & Rafael Chillón & Luis M. Lopez-Ramos & Antonio G. Marques & José Luis Rojo-Álvarez, 2018. "Convex Programming and Bootstrap Sensitivity for Optimized Electricity Bill in Healthcare Buildings under a Time-Of-Use Pricing Scheme," Energies, MDPI, vol. 11(6), pages 1-17, June.
    2. Hammad Mahmoud A. & Jereb Borut & Rosi Bojan & Dragan Dejan, 2020. "Methods and Models for Electric Load Forecasting: A Comprehensive Review," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 11(1), pages 51-76, February.
    3. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    4. Dimitrios K. Panagiotou & Anastasios I. Dounis, 2022. "Comparison of Hospital Building’s Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network," Energies, MDPI, vol. 15(17), pages 1-25, September.
    5. Ibrahim Soyler & Ercan Izgi, 2022. "Electricity Demand Forecasting of Hospital Buildings in Istanbul," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
    6. Karol Bot & Samira Santos & Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano, 2021. "Design of Ensemble Forecasting Models for Home Energy Management Systems," Energies, MDPI, vol. 14(22), pages 1-37, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    2. Xueliang Li & Bingkang Li & Long Zhao & Huiru Zhao & Wanlei Xue & Sen Guo, 2019. "Forecasting the Short-Term Electric Load Considering the Influence of Air Pollution Prevention and Control Policy via a Hybrid Model," Sustainability, MDPI, vol. 11(10), pages 1-21, May.
    3. Arpita Samanta Santra & Jun-Lin Lin, 2019. "Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 12(11), pages 1-11, May.
    4. Min-Liang Huang, 2016. "Hybridization of Chaotic Quantum Particle Swarm Optimization with SVR in Electric Demand Forecasting," Energies, MDPI, vol. 9(6), pages 1-16, May.
    5. Cheng-Wen Lee & Bing-Yi Lin, 2016. "Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting," Energies, MDPI, vol. 9(11), pages 1-16, October.
    6. George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
    7. Pavel V. Matrenin & Vadim Z. Manusov & Alexandra I. Khalyasmaa & Dmitry V. Antonenkov & Stanislav A. Eroshenko & Denis N. Butusov, 2020. "Improving Accuracy and Generalization Performance of Small-Size Recurrent Neural Networks Applied to Short-Term Load Forecasting," Mathematics, MDPI, vol. 8(12), pages 1-17, December.
    8. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    9. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
    10. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    11. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    12. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    13. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    14. Ricardo Vazquez & Hortensia Amaris & Monica Alonso & Gregorio Lopez & Jose Ignacio Moreno & Daniel Olmeda & Javier Coca, 2017. "Assessment of an Adaptive Load Forecasting Methodology in a Smart Grid Demonstration Project," Energies, MDPI, vol. 10(2), pages 1-23, February.
    15. Zhang, Yue & Farnoosh, Arash, 2019. "Analyzing the dynamic impact of electricity futures on revenue and risk of renewable energy in China," Energy Policy, Elsevier, vol. 132(C), pages 678-690.
    16. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    17. Alexandros Menelaos Tzortzis & Sotiris Pelekis & Evangelos Spiliotis & Evangelos Karakolis & Spiros Mouzakitis & John Psarras & Dimitris Askounis, 2023. "Transfer Learning for Day-Ahead Load Forecasting: A Case Study on European National Electricity Demand Time Series," Mathematics, MDPI, vol. 12(1), pages 1-24, December.
    18. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    19. Kiguchi, Y. & Weeks, M. & Arakawa, R., 2021. "Predicting winners and losers under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 236(C).
    20. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:493-:d:133465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.