IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2169-d457151.html
   My bibliography  Save this article

Improving Accuracy and Generalization Performance of Small-Size Recurrent Neural Networks Applied to Short-Term Load Forecasting

Author

Listed:
  • Pavel V. Matrenin

    (Industrial Power Supply Systems Department, Novosibirsk State Technical University, 630073 Novosibirsk, Russia)

  • Vadim Z. Manusov

    (Industrial Power Supply Systems Department, Novosibirsk State Technical University, 630073 Novosibirsk, Russia)

  • Alexandra I. Khalyasmaa

    (Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
    Power Plants Department, Novosibirsk State Technical University, 630073 Novosibirsk, Russia)

  • Dmitry V. Antonenkov

    (Industrial Power Supply Systems Department, Novosibirsk State Technical University, 630073 Novosibirsk, Russia)

  • Stanislav A. Eroshenko

    (Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
    Power Plants Department, Novosibirsk State Technical University, 630073 Novosibirsk, Russia)

  • Denis N. Butusov

    (Youth Research Institute, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia)

Abstract

The load forecasting of a coal mining enterprise is a complicated problem due to the irregular technological process of mining. It is necessary to apply models that can distinguish both cyclic components and complex rules in the energy consumption data that reflect the highly volatile technological process. For such tasks, Artificial Neural Networks demonstrate advanced performance. In recent years, the effectiveness of Artificial Neural Networks has been significantly improved thanks to new state-of-the-art architectures, training methods and approaches to reduce overfitting. In this paper, the Recurrent Neural Network architecture with a small-size model was applied to the short-term load forecasting of a coal mining enterprise. A single recurrent model was developed and trained for the entire four-year operational period of the enterprise, with significant changes in the energy consumption pattern during the period. This task was challenging since it required high-level generalization performance from the model. It was shown that the accuracy and generalization properties of small-size recurrent models can be significantly improved by the proper selection of the hyper-parameters and training method. The effectiveness of the proposed approach was validated using a real-case dataset.

Suggested Citation

  • Pavel V. Matrenin & Vadim Z. Manusov & Alexandra I. Khalyasmaa & Dmitry V. Antonenkov & Stanislav A. Eroshenko & Denis N. Butusov, 2020. "Improving Accuracy and Generalization Performance of Small-Size Recurrent Neural Networks Applied to Short-Term Load Forecasting," Mathematics, MDPI, vol. 8(12), pages 1-17, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2169-:d:457151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2169/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2169/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
    2. Saehong Park & Seunghyoung Ryu & Yohwan Choi & Jihyo Kim & Hongseok Kim, 2015. "Data-Driven Baseline Estimation of Residential Buildings for Demand Response," Energies, MDPI, vol. 8(9), pages 1-21, September.
    3. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    4. Hong, Wei-Chiang, 2011. "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm," Energy, Elsevier, vol. 36(9), pages 5568-5578.
    5. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    6. Weide Li & Xuan Yang & Hao Li & Lili Su, 2017. "Hybrid Forecasting Approach Based on GRNN Neural Network and SVR Machine for Electricity Demand Forecasting," Energies, MDPI, vol. 10(1), pages 1-17, January.
    7. Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
    8. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Jiang & Yuxin Cheng & Haozhe Le & Chunquan Li & Peter X. Liu, 2022. "A Stacking Learning Model Based on Multiple Similar Days for Short-Term Load Forecasting," Mathematics, MDPI, vol. 10(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miloš Božić & Miloš Stojanović & Zoran Stajić & Dragan Tasić, 2013. "A New Two-Stage Approach to Short Term Electrical Load Forecasting," Energies, MDPI, vol. 6(4), pages 1-19, April.
    2. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    3. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    4. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko, 2021. "ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise," Energies, MDPI, vol. 14(23), pages 1-22, November.
    5. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    6. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
    7. Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
    8. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    9. Arpita Samanta Santra & Jun-Lin Lin, 2019. "Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 12(11), pages 1-11, May.
    10. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    11. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2019. "Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting," Energies, MDPI, vol. 12(1), pages 1-21, January.
    12. Min-Liang Huang, 2016. "Hybridization of Chaotic Quantum Particle Swarm Optimization with SVR in Electric Demand Forecasting," Energies, MDPI, vol. 9(6), pages 1-16, May.
    13. Tulin Guzel & Hakan Cinar & Mehmet Nabi Cenet & Kamil Doruk Oguz & Ahmet Yucekaya & Mustafa Hekimoglu, 2023. "A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 179-193, September.
    14. Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
    15. Yongquan Dong & Zichen Zhang & Wei-Chiang Hong, 2018. "A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-21, April.
    16. Sun, Jian & Liu, Gang & Sun, Boyang & Xiao, Gang, 2021. "Light-stacking strengthened fusion based building energy consumption prediction framework via variable weight feature selection," Applied Energy, Elsevier, vol. 303(C).
    17. Cheng-Wen Lee & Bing-Yi Lin, 2016. "Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting," Energies, MDPI, vol. 9(11), pages 1-16, October.
    18. Cheng-Wen Lee & Bing-Yi Lin, 2017. "Applications of the Chaotic Quantum Genetic Algorithm with Support Vector Regression in Load Forecasting," Energies, MDPI, vol. 10(11), pages 1-18, November.
    19. Jiarong Shi & Zhiteng Wang, 2022. "A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    20. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2169-:d:457151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.