IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2983-d234262.html
   My bibliography  Save this article

Forecasting the Short-Term Electric Load Considering the Influence of Air Pollution Prevention and Control Policy via a Hybrid Model

Author

Listed:
  • Xueliang Li

    (Economic & Research Institute, State Grid Shandong Electric Power Company, Jinan 250002, China)

  • Bingkang Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Long Zhao

    (Economic & Research Institute, State Grid Shandong Electric Power Company, Jinan 250002, China)

  • Huiru Zhao

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Wanlei Xue

    (Economic & Research Institute, State Grid Shandong Electric Power Company, Jinan 250002, China)

  • Sen Guo

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

Since 2013, a series of air pollution prevention and control (APPC) measures have been promulgated in China for reducing the level of air pollution, which can affect regional short-term electricity power demand by changing the behavior of power users electricity consumption. This paper analyzes the policy system of the APPC measures and its impact on regional short-term electricity demand, and determines the regional short-term load impact factors considering the impact of APPC measures. On this basis, this paper proposes a similar day selection method based on the best and worst method and grey relational analysis (BWM-GRA) in order to construct the training sample set, which considers the difference in the influence degree of characteristic indicators on daily power load. Further, a short-term load forecasting method based on least squares support vector machine (LSSVM) optimized by salp swarm algorithm (SSA) is developed. By forecasting the load of a city affected by air pollution in Northern China, and comparing the results with several selected models, it reveals that the impact of APPC measures on regional short-term load is significant. Moreover, by considering the influence of APPC measures and avoiding the subjectivity of model parameter settings, the proposed load forecasting model can improve the accuracy of, and provide an effective tool for short-term load forecasting. Finally, some limitations of this paper are discussed.

Suggested Citation

  • Xueliang Li & Bingkang Li & Long Zhao & Huiru Zhao & Wanlei Xue & Sen Guo, 2019. "Forecasting the Short-Term Electric Load Considering the Influence of Air Pollution Prevention and Control Policy via a Hybrid Model," Sustainability, MDPI, vol. 11(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2983-:d:234262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
    2. Yan Hong Chen & Wei-Chiang Hong & Wen Shen & Ning Ning Huang, 2016. "Electric Load Forecasting Based on a Least Squares Support Vector Machine with Fuzzy Time Series and Global Harmony Search Algorithm," Energies, MDPI, vol. 9(2), pages 1-13, January.
    3. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Zhang, Yan & Su, Meirong & Ulgiati, Sergio, 2016. "Prevention and control policy analysis for energy-related regional pollution management in China," Applied Energy, Elsevier, vol. 166(C), pages 292-300.
    4. Niu, Dong-xiao & Song, Zong-yun & Xiao, Xin-li, 2017. "Electric power substitution for coal in China: Status quo and SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 610-622.
    5. Huiru Zhao & Nana Li, 2016. "Optimal Siting of Charging Stations for Electric Vehicles Based on Fuzzy Delphi and Hybrid Multi-Criteria Decision Making Approaches from an Extended Sustainability Perspective," Energies, MDPI, vol. 9(4), pages 1-22, April.
    6. Huiru Zhao & Guo Huang & Ning Yan, 2018. "Forecasting Energy-Related CO 2 Emissions Employing a Novel SSA-LSSVM Model: Considering Structural Factors in China," Energies, MDPI, vol. 11(4), pages 1-21, March.
    7. Yuanxin Liu & FengYun Li & Yi Wang & Xinhua Yu & Jiahai Yuan & Yuwei Wang, 2018. "Assessing the Environmental Impact Caused by Power Grid Projects in High Altitude Areas Based on BWM and Vague Sets Techniques," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    8. Lyu, Wanning & Yuan Li & Dabo Guan & Hongyan Zhao & Qiang Zhang & Zhu Liu, "undated". "Driving forces of Chinese primary air pollution emissions: an index decomposition analysis," Working Paper 428386, Harvard University OpenScholar.
    9. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    10. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    11. Radu Porumb & Petru Postolache & George Serițan & Ramona Vatu & Oana Ceaki, 2013. "Load profiles analysis for electricity market," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 1(2), pages 30-38, December.
    12. Li, Song & Goel, Lalit & Wang, Peng, 2016. "An ensemble approach for short-term load forecasting by extreme learning machine," Applied Energy, Elsevier, vol. 170(C), pages 22-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuqiang Li & Shiying Zhang & Wenxuan Li & Wei Zhao & Bingkang Li & Huiru Zhao, 2019. "Forecasting Hourly Power Load Considering Time Division: A Hybrid Model Based on K-means Clustering and Probability Density Forecasting Techniques," Sustainability, MDPI, vol. 11(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Wang & Jin-Chun Huang & Shan-Lin Huang & Gwo-Hshiung Tzeng & Ting Zhu, 2021. "Improvement Path for Resource-Constrained Cities Identified Using an Environmental Co-Governance Assessment Framework Based on BWM-mV Model," IJERPH, MDPI, vol. 18(9), pages 1-30, May.
    2. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    3. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    4. Junnan Wu & Xin Liu & Dianqi Pan & Yichen Zhang & Jiquan Zhang & Kai Ke, 2023. "Research on Safety Evaluation of Municipal Sewage Treatment Plant Based on Improved Best-Worst Method and Fuzzy Comprehensive Method," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    5. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    6. Pushparenu Bhattacharjee & Syed Abou Iltaf Hussain & V. Dey & U. K. Mandal, 2023. "Failure mode and effects analysis for submersible pump component using proportionate risk assessment model: a case study in the power plant of Agartala," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1778-1798, October.
    7. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    8. Yuanxin Liu & FengYun Li & Yi Wang & Xinhua Yu & Jiahai Yuan & Yuwei Wang, 2018. "Assessing the Environmental Impact Caused by Power Grid Projects in High Altitude Areas Based on BWM and Vague Sets Techniques," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    9. Ravindra Singh Saluja & Varinder Singh, 2023. "Attribute-based characterization, coding, and selection of joining processes using a novel MADM approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 616-655, June.
    10. Ghadimi, Pezhman & Donnelly, Oisin & Sar, Kubra & Wang, Chao & Azadnia, Amir Hossein, 2022. "The successful implementation of industry 4.0 in manufacturing: An analysis and prioritization of risks in Irish industry," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    11. Liu, Xiao & Li, Ming-Yang, 2024. "Sustainable service product design method: Focus on customer demands and triple bottom line," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
    12. Junli Zhang & Guoteng Wang & Zheng Xu & Zheren Zhang, 2022. "A Comprehensive Evaluation Method and Strengthening Measures for AC/DC Hybrid Power Grids," Energies, MDPI, vol. 15(12), pages 1-20, June.
    13. Hamzeh Soltanali & Mehdi Khojastehpour & Siamak Kheybari, 2023. "Evaluating the critical success factors for maintenance management in agro-industries using multi-criteria decision-making techniques," Operations Management Research, Springer, vol. 16(2), pages 949-968, June.
    14. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    15. Corrente, Salvatore & Greco, Salvatore & Rezaei, Jafar, 2024. "Better decisions with less cognitive load: The Parsimonious BWM," Omega, Elsevier, vol. 126(C).
    16. Vieira, Fabiana C. & Ferreira, Fernando A.F. & Govindan, Kannan & Ferreira, Neuza C.M.Q.F. & Banaitis, Audrius, 2022. "Measuring urban digitalization using cognitive mapping and the best worst method (BWM)," Technology in Society, Elsevier, vol. 71(C).
    17. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    18. Mei, Mei & Chen, Zhihua, 2021. "Evaluation and selection of sustainable hydrogen production technology with hybrid uncertain sustainability indicators based on rough-fuzzy BWM-DEA," Renewable Energy, Elsevier, vol. 165(P1), pages 716-730.
    19. Javid Nafari & Alireza Arab & Sina Ghaffari, 2017. "Through the Looking Glass: Analysis of Factors Influencing Iranian Student’s Study Abroad Motivations and Destination Choice," SAGE Open, , vol. 7(2), pages 21582440177, June.
    20. Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2983-:d:234262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.