Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
- Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
- Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
- Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
- Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Janusz Sowinski, 2021. "The Impact of the Selection of Exogenous Variables in the ANFIS Model on the Results of the Daily Load Forecast in the Power Company," Energies, MDPI, vol. 14(2), pages 1-18, January.
- Feras Alasali & Khaled Nusair & Lina Alhmoud & Eyad Zarour, 2021. "Impact of the COVID-19 Pandemic on Electricity Demand and Load Forecasting," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
- Fugang LI & Guangwen MA & Shijun CHEN & Weibin HUANG, 2021. "An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2941-2963, July.
- Yih-Der Lee & Jheng-Lun Jiang & Yuan-Hsiang Ho & Wei-Chen Lin & Hsin-Ching Chih & Wei-Tzer Huang, 2020. "Neutral Current Reduction in Three-Phase Four-Wire Distribution Feeders by Optimal Phase Arrangement Based on a Full-Scale Net Load Model Derived from the FTU Data," Energies, MDPI, vol. 13(7), pages 1-20, April.
- Mehmood, Faiza & Ghani, Muhammad Usman & Ghafoor, Hina & Shahzadi, Rehab & Asim, Muhammad Nabeel & Mahmood, Waqar, 2022. "EGD-SNet: A computational search engine for predicting an end-to-end machine learning pipeline for Energy Generation & Demand Forecasting," Applied Energy, Elsevier, vol. 324(C).
- Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
- Balduíno César Mateus & Mateus Mendes & José Torres Farinha & Rui Assis & António Marques Cardoso, 2021. "Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press," Energies, MDPI, vol. 14(21), pages 1-21, October.
- Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
- João Antunes Rodrigues & José Torres Farinha & Mateus Mendes & Ricardo J. G. Mateus & António J. Marques Cardoso, 2022. "Comparison of Different Features and Neural Networks for Predicting Industrial Paper Press Condition," Energies, MDPI, vol. 15(17), pages 1-16, August.
- Jun-Lin Lin & Yiqing Zhang & Kunhuang Zhu & Binbin Chen & Feng Zhang, 2020. "Asymmetric Loss Functions for Contract Capacity Optimization," Energies, MDPI, vol. 13(12), pages 1-13, June.
- Dengyong Zhang & Haixin Tong & Feng Li & Lingyun Xiang & Xiangling Ding, 2020. "An Ultra-Short-Term Electrical Load Forecasting Method Based on Temperature-Factor-Weight and LSTM Model," Energies, MDPI, vol. 13(18), pages 1-14, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
- Anand Krishnan Prakash & Susu Xu & Ram Rajagopal & Hae Young Noh, 2018. "Robust Building Energy Load Forecasting Using Physically-Based Kernel Models," Energies, MDPI, vol. 11(4), pages 1-21, April.
- Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
- Alireza Pourdaryaei & Mohammad Mohammadi & Mazaher Karimi & Hazlie Mokhlis & Hazlee A. Illias & Seyed Hamidreza Aghay Kaboli & Shameem Ahmad, 2021. "Recent Development in Electricity Price Forecasting Based on Computational Intelligence Techniques in Deregulated Power Market," Energies, MDPI, vol. 14(19), pages 1-28, September.
- Clements, A.E. & Hurn, A.S. & Li, Z., 2016.
"Forecasting day-ahead electricity load using a multiple equation time series approach,"
European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
- Adam Clements & Stan Hurn & Zili Li, 2014. "Forecasting day-ahead electricity load using a multiple equation time series approach," NCER Working Paper Series 103, National Centre for Econometric Research, revised 06 May 2015.
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2019. "Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting," Energies, MDPI, vol. 12(1), pages 1-21, January.
- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Tanrisever, Fehmi & Derinkuyu, Kursad & Heeren, Michael, 2013. "Forecasting electricity infeed for distribution system networks: An analysis of the Dutch case," Energy, Elsevier, vol. 58(C), pages 247-257.
- Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
- Sun, Bixuan & Eryilmaz, Derya & Konidena, Rao, 2018. "Transparency in Long-Term Electric Demand Forecast: A Perspective on Regional Load Forecasting," 2018 Annual Meeting, August 5-7, Washington, D.C. 274396, Agricultural and Applied Economics Association.
- Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
- Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
- Pavel V. Matrenin & Vadim Z. Manusov & Alexandra I. Khalyasmaa & Dmitry V. Antonenkov & Stanislav A. Eroshenko & Denis N. Butusov, 2020. "Improving Accuracy and Generalization Performance of Small-Size Recurrent Neural Networks Applied to Short-Term Load Forecasting," Mathematics, MDPI, vol. 8(12), pages 1-17, December.
- Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
- Moral-Carcedo, Julián & Pérez-García, Julián, 2019. "Time of day effects of temperature and daylight on short term electricity load," Energy, Elsevier, vol. 174(C), pages 169-183.
- Rodolfo Gordillo-Orquera & Luis Miguel Lopez-Ramos & Sergio Muñoz-Romero & Paz Iglesias-Casarrubios & Diego Arcos-Avilés & Antonio G. Marques & José Luis Rojo-Álvarez, 2018. "Analyzing and Forecasting Electrical Load Consumption in Healthcare Buildings," Energies, MDPI, vol. 11(3), pages 1-18, February.
- Angelopoulos, Dimitrios & Siskos, Yannis & Psarras, John, 2019. "Disaggregating time series on multiple criteria for robust forecasting: The case of long-term electricity demand in Greece," European Journal of Operational Research, Elsevier, vol. 275(1), pages 252-265.
- Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
- repec:hum:wpaper:sfb649dp2012-067 is not listed on IDEAS
- Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
More about this item
Keywords
long short term memory (LSTM); genetic algorithm (GA); short term load forecasting (STLF); electricity load forecasting; multivariate time series;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2040-:d:234951. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.