Comparison of Hospital Building’s Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Azadeh Sadeghi & Roohollah Younes Sinaki & William A. Young & Gary R. Weckman, 2020. "An Intelligent Model to Predict Energy Performances of Residential Buildings Based on Deep Neural Networks," Energies, MDPI, vol. 13(3), pages 1-23, January.
- Hill, Tim & Marquez, Leorey & O'Connor, Marcus & Remus, William, 1994. "Artificial neural network models for forecasting and decision making," International Journal of Forecasting, Elsevier, vol. 10(1), pages 5-15, June.
- Rodolfo Gordillo-Orquera & Luis Miguel Lopez-Ramos & Sergio Muñoz-Romero & Paz Iglesias-Casarrubios & Diego Arcos-Avilés & Antonio G. Marques & José Luis Rojo-Álvarez, 2018. "Analyzing and Forecasting Electrical Load Consumption in Healthcare Buildings," Energies, MDPI, vol. 11(3), pages 1-18, February.
- George Kyriakarakos & Anastasios Dounis, 2020. "Intelligent Management of Distributed Energy Resources for Increased Resilience and Environmental Sustainability of Hospitals," Sustainability, MDPI, vol. 12(18), pages 1-4, September.
- Panagiotis Korkidis & Anastasios Dounis & Panagiotis Kofinas, 2021. "Computational Intelligence Technologies for Occupancy Estimation and Comfort Control in Buildings," Energies, MDPI, vol. 14(16), pages 1-33, August.
- Maciej Slowik & Wieslaw Urban, 2022. "Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant," Energies, MDPI, vol. 15(9), pages 1-16, May.
- Andrea Manno & Emanuele Martelli & Edoardo Amaldi, 2022. "A Shallow Neural Network Approach for the Short-Term Forecast of Hourly Energy Consumption," Energies, MDPI, vol. 15(3), pages 1-21, January.
- Foucquier, Aurélie & Robert, Sylvain & Suard, Frédéric & Stéphan, Louis & Jay, Arnaud, 2013. "State of the art in building modelling and energy performances prediction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 272-288.
- Fazli Wahid & Muhammad Fayaz & Ayman Aljarbouh & Masood Mir & Muhammad Aamir & Imran, 2020. "Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms," Energies, MDPI, vol. 13(17), pages 1-26, August.
- Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2021. "Fuzzy Control System for Smart Energy Management in Residential Buildings Based on Environmental Data," Energies, MDPI, vol. 14(3), pages 1-18, February.
- Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
- Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
- Hamid R. Khosravani & María Del Mar Castilla & Manuel Berenguel & Antonio E. Ruano & Pedro M. Ferreira, 2016. "A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building," Energies, MDPI, vol. 9(1), pages 1-24, January.
- Nikos Kampelis & Elisavet Tsekeri & Dionysia Kolokotsa & Kostas Kalaitzakis & Daniela Isidori & Cristina Cristalli, 2018. "Development of Demand Response Energy Management Optimization at Building and District Levels Using Genetic Algorithm and Artificial Neural Network Modelling Power Predictions," Energies, MDPI, vol. 11(11), pages 1-22, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Anastasios I. Dounis, 2022. "Machine Intelligence in Smart Buildings," Energies, MDPI, vol. 16(1), pages 1-5, December.
- Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.
- Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
- Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).
- Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2020. "Performance Assessment of Data-Driven and Physical-Based Models to Predict Building Energy Demand in Model Predictive Controls," Energies, MDPI, vol. 13(12), pages 1-18, June.
- Zini, Marco & Carcasci, Carlo, 2023. "Machine learning-based monitoring method for the electricity consumption of a healthcare facility in Italy," Energy, Elsevier, vol. 262(PB).
- Isaías Gomes & Karol Bot & Maria Graça Ruano & António Ruano, 2022. "Recent Techniques Used in Home Energy Management Systems: A Review," Energies, MDPI, vol. 15(8), pages 1-41, April.
- Hyungah Lee & Dongju Kim & Jae-Hoi Gu, 2023. "Prediction of Food Factory Energy Consumption Using MLP and SVR Algorithms," Energies, MDPI, vol. 16(3), pages 1-21, February.
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Prybutok, Victor R. & Yi, Junsub & Mitchell, David, 2000. "Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations," European Journal of Operational Research, Elsevier, vol. 122(1), pages 31-40, April.
- Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
- Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
- Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
- Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
- C, Deep Prakash & Majumdar, Adrija, 2023. "Predicting sports fans’ engagement with culturally aligned social media content: A language expectancy perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
- Ovidiu Ivanov & Samiran Chattopadhyay & Soumya Banerjee & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A Novel Algorithm with Multiple Consumer Demand Response Priorities in Residential Unbalanced LV Electricity Distribution Networks," Mathematics, MDPI, vol. 8(8), pages 1-24, July.
- Ayman A. Aly & Bassem F. Felemban & Ardashir Mohammadzadeh & Oscar Castillo & Andrzej Bartoszewicz, 2021. "Frequency Regulation System: A Deep Learning Identification, Type-3 Fuzzy Control and LMI Stability Analysis," Energies, MDPI, vol. 14(22), pages 1-21, November.
- Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
- Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
More about this item
Keywords
artificial neural networks; adaptive neuro-fuzzy adaptive inference system; long short-term memory networks; backpropagation algorithms; metaheuristic algorithms; machine learning; load forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6453-:d:906048. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.