IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p706-d489835.html
   My bibliography  Save this article

Deep Geothermal Heating Potential for the Communities of the Western Canadian Sedimentary Basin

Author

Listed:
  • Jacek Majorowicz

    (Northern Geothermal Cons, Edmonton, AB T6R2J8, Canada
    Department of Physics, University of Alberta, 11322-89 Ave., Edmonton, AB T6G 2G7, Canada)

  • Stephen E. Grasby

    (Geological Survey of Canada, 3303 33 St NW, Calgary, AB T2L 2A7, Canada)

Abstract

We summarize the feasibility of using geothermal energy from the Western Canada Sedimentary Basin (WCSB) to support communities with populations >3000 people, including those in northeastern British Columbia, southwestern part of Northwest Territories (NWT), southern Saskatchewan, and southeastern Manitoba, along with previously studied communities in Alberta. The geothermal energy potential of the WCSB is largely determined by the basin’s geometry; the sediments start at 0 m thickness adjacent to the Canadian shield in the east and thicken to >6 km to the west, and over 3 km in the Williston sub-basin to the south. Direct heat use is most promising in the western and southern parts of the WCSB where sediment thickness exceeds 2–3 km. Geothermal potential is also dependent on the local geothermal gradient. Aquifers suitable for heating systems occur in western-northwestern Alberta, northeastern British Columbia, and southwestern Saskatchewan. Electrical power production is limited to the deepest parts of the WCSB, where aquifers >120 °C and fluid production rates >80 kg/s occur (southwestern Northwest Territories, northwestern Alberta, northeastern British Columbia, and southeastern Saskatchewan. For the western regions with the thickest sediments, the foreland basin east of the Rocky Mountains, estimates indicate that geothermal power up to 2 MW el. (electrical), and up to 10 times higher for heating in MW th. (thermal), are possible.

Suggested Citation

  • Jacek Majorowicz & Stephen E. Grasby, 2021. "Deep Geothermal Heating Potential for the Communities of the Western Canadian Sedimentary Basin," Energies, MDPI, vol. 14(3), pages 1-37, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:706-:d:489835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon Weides & Jacek Majorowicz, 2014. "Implications of Spatial Variability in Heat Flow for Geothermal Resource Evaluation in Large Foreland Basins: The Case of the Western Canada Sedimentary Basin," Energies, MDPI, vol. 7(4), pages 1-22, April.
    2. Palmer-Wilson, K. & Banks, J. & Walsh, W. & Robertson, B., 2018. "Sedimentary basin geothermal favourability mapping and power generation assessments," Renewable Energy, Elsevier, vol. 127(C), pages 1087-1100.
    3. Majorowicz, Jacek & Moore, Michal, 2014. "The feasibility and potential of geothermal heat in the deep Alberta foreland basin-Canada for CO2 savings," Renewable Energy, Elsevier, vol. 66(C), pages 541-549.
    4. Thorsten Agemar & Josef Weber & Rüdiger Schulz, 2014. "Deep Geothermal Energy Production in Germany," Energies, MDPI, vol. 7(7), pages 1-20, July.
    5. Kapil, Ankur & Bulatov, Igor & Smith, Robin & Kim, Jin-Kuk, 2012. "Process integration of low grade heat in process industry with district heating networks," Energy, Elsevier, vol. 44(1), pages 11-19.
    6. Majorowicz, Jacek & Grasby, Stephen E., 2019. "Deep geothermal energy in Canadian sedimentary basins VS. Fossils based energy we try to replace – Exergy [KJ/KG] compared," Renewable Energy, Elsevier, vol. 141(C), pages 259-277.
    7. Paul L. Younger, 2015. "Geothermal Energy: Delivering on the Global Potential," Energies, MDPI, vol. 8(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Xiao & Jun Zheng & Bin Dou & Hong Tian & Guodong Cui & Muhammad Kashif, 2021. "Mechanical Behaviors of Granite after Thermal Shock with Different Cooling Rates," Energies, MDPI, vol. 14(13), pages 1-17, June.
    2. Stefano Mazzoli, 2022. "Geothermal Energy and Structural Geology," Energies, MDPI, vol. 15(21), pages 1-3, October.
    3. R.V., Rohit & R., Vipin Raj & Kiplangat, Dennis C. & R., Veena & Jose, Rajan & Pradeepkumar, A.P. & Kumar, K. Satheesh, 2023. "Tracing the evolution and charting the future of geothermal energy research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    2. Schiffner, Daniel & Banks, Jonathan & Rabbani, Arif & Lefsrud, Lianne & Adamowicz, Wiktor, 2022. "Techno-economic assessment for heating cattle feed water with low-temperature geothermal energy: A case study from central Alberta, Canada," Renewable Energy, Elsevier, vol. 198(C), pages 1105-1120.
    3. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects," Energies, MDPI, vol. 15(11), pages 1-20, June.
    4. Majorowicz, Jacek & Grasby, Stephen E., 2019. "Deep geothermal energy in Canadian sedimentary basins VS. Fossils based energy we try to replace – Exergy [KJ/KG] compared," Renewable Energy, Elsevier, vol. 141(C), pages 259-277.
    5. Wei-Tao Wu & Nadine Aubry & James F. Antaki & Mark L. McKoy & Mehrdad Massoudi, 2017. "Heat Transfer in a Drilling Fluid with Geothermal Applications," Energies, MDPI, vol. 10(9), pages 1-18, September.
    6. Palmer-Wilson, K. & Banks, J. & Walsh, W. & Robertson, B., 2018. "Sedimentary basin geothermal favourability mapping and power generation assessments," Renewable Energy, Elsevier, vol. 127(C), pages 1087-1100.
    7. Jacek Majorowicz, 2021. "Review of the Heat Flow Mapping in Polish Sedimentary Basin across Different Tectonic Terrains," Energies, MDPI, vol. 14(19), pages 1-17, September.
    8. Paul L. Younger, 2015. "Geothermal Energy: Delivering on the Global Potential," Energies, MDPI, vol. 8(10), pages 1-18, October.
    9. Yuan, Wanju & Chen, Zhuoheng & Grasby, Stephen E. & Little, Edward, 2021. "Closed-loop geothermal energy recovery from deep high enthalpy systems," Renewable Energy, Elsevier, vol. 177(C), pages 976-991.
    10. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    11. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    12. Strobel, Gion & Hagemann, Birger & Huppertz, Thiago Martins & Ganzer, Leonhard, 2020. "Underground bio-methanation: Concept and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    13. Davide Toselli & Florian Heberle & Dieter Brüggemann, 2019. "Techno-Economic Analysis of Hybrid Binary Cycles with Geothermal Energy and Biogas Waste Heat Recovery," Energies, MDPI, vol. 12(10), pages 1-18, May.
    14. Oluleye, Gbemi & Jobson, Megan & Smith, Robin, 2015. "A hierarchical approach for evaluating and selecting waste heat utilization opportunities," Energy, Elsevier, vol. 90(P1), pages 5-23.
    15. Knoblauch, Theresa A.K. & Trutnevyte, Evelina & Stauffacher, Michael, 2019. "Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study," Energy Policy, Elsevier, vol. 128(C), pages 807-816.
    16. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    17. Simon Moser & Stefan Puschnigg, 2021. "Supra-Regional District Heating Networks: A Missing Infrastructure for a Sustainable Energy System," Energies, MDPI, vol. 14(12), pages 1-15, June.
    18. Moore, Kayla R. & Holländer, Hartmut M., 2020. "Feasibility of low-temperature geothermal systems: Considerations of thermal anomalies, geochemistry, and local assets," Applied Energy, Elsevier, vol. 275(C).
    19. Löffler, Konstantin & Hainsch, Karlo & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Von Hirschhausen, Christian, 2017. "Designing a Model for the Global Energy System—GENeSYS-MOD: An Application of the Open-Source Energy Modeling System (OSeMOSYS)," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(10), pages 1-28.
    20. Sean M. Watson & Gioia Falcone & Rob Westaway, 2020. "Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential," Energies, MDPI, vol. 13(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:706-:d:489835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.