IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p518-d73410.html
   My bibliography  Save this article

Investigation of a Novel Mechanical to Thermal Energy Converter Based on the Inverse Problem of Electric Machines

Author

Listed:
  • Lei Chen

    (School of Eletrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Yulong Pei

    (School of Eletrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Feng Chai

    (School of Eletrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Shukang Cheng

    (School of Eletrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

A novel converter that can directly transform electrical, wind, hydraulic and other types of mechanical energy into thermal energy is presented in this study. First, the thermal energy of the converter is classified and then calculated by a finite element method. The eddy current distribution in the stator of the converter is also discussed. Second, the temperature field of the converter is calculated using a boundary element method. Subsequently, a thermal power–temperature coupled calculation method is presented to calculate the actual thermal power and temperature of the converter. The characteristic curves of the actual thermal power and the increase in water flow temperature are then presented based on the calculation results. Lastly, an experimental system is built, the thermal power and temperature of the converter are measured and the experimental results and the analytical calculations are compared.

Suggested Citation

  • Lei Chen & Yulong Pei & Feng Chai & Shukang Cheng, 2016. "Investigation of a Novel Mechanical to Thermal Energy Converter Based on the Inverse Problem of Electric Machines," Energies, MDPI, vol. 9(7), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:518-:d:73410
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aime Hilaire Tchapda & Sarma V. Pisupati, 2014. "A Review of Thermal Co-Conversion of Coal and Biomass/Waste," Energies, MDPI, vol. 7(3), pages 1-51, February.
    2. Thorsten Agemar & Josef Weber & Rüdiger Schulz, 2014. "Deep Geothermal Energy Production in Germany," Energies, MDPI, vol. 7(7), pages 1-20, July.
    3. Buratti, C. & Moretti, E., 2012. "Glazing systems with silica aerogel for energy savings in buildings," Applied Energy, Elsevier, vol. 98(C), pages 396-403.
    4. Ming Cheng & Le Sun & Giuseppe Buja & Lihua Song, 2015. "Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles," Energies, MDPI, vol. 8(9), pages 1-24, September.
    5. Elisa Moretti & Emanuele Bonamente & Cinzia Buratti & Franco Cotana, 2013. "Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings," Energies, MDPI, vol. 6(10), pages 1-16, October.
    6. Jing Zhao & Wei Liu & Bin Li & Xiangdong Liu & Congzhe Gao & Zhongxin Gu, 2015. "Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor," Energies, MDPI, vol. 8(9), pages 1-31, September.
    7. Anna Laura Pisello & Franco Cotana & Andrea Nicolini & Lucia Brinchi, 2013. "Development of Clay Tile Coatings for Steep-Sloped Cool Roofs," Energies, MDPI, vol. 6(8), pages 1-17, July.
    8. Rokas Valancius & Andrius Jurelionis & Viktoras Dorosevas, 2013. "Method for Cost-Benefit Analysis of Improved Indoor Climate Conditions and Reduced Energy Consumption in Office Buildings," Energies, MDPI, vol. 6(9), pages 1-16, September.
    9. Jin-Hwan Oh & Yujin Nam, 2015. "Study on the Effect of Ground Heat Storage by Solar Heat Using Numerical Simulation," Energies, MDPI, vol. 8(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Moretti & Emanuele Bonamente & Cinzia Buratti & Franco Cotana, 2013. "Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings," Energies, MDPI, vol. 6(10), pages 1-16, October.
    2. Pisello, Anna Laura & Petrozzi, Alessandro & Castaldo, Veronica Lucia & Cotana, Franco, 2016. "On an innovative integrated technique for energy refurbishment of historical buildings: Thermal-energy, economic and environmental analysis of a case study," Applied Energy, Elsevier, vol. 162(C), pages 1313-1322.
    3. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    4. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    5. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    6. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    7. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2017. "Effect of sky clearness index on transmission of evacuated (vacuum) glazing," Renewable Energy, Elsevier, vol. 105(C), pages 160-166.
    8. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.
    9. Strobel, Gion & Hagemann, Birger & Huppertz, Thiago Martins & Ganzer, Leonhard, 2020. "Underground bio-methanation: Concept and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    10. Davide Toselli & Florian Heberle & Dieter Brüggemann, 2019. "Techno-Economic Analysis of Hybrid Binary Cycles with Geothermal Energy and Biogas Waste Heat Recovery," Energies, MDPI, vol. 12(10), pages 1-18, May.
    11. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    12. Majorowicz, Jacek & Grasby, Stephen E., 2019. "Deep geothermal energy in Canadian sedimentary basins VS. Fossils based energy we try to replace – Exergy [KJ/KG] compared," Renewable Energy, Elsevier, vol. 141(C), pages 259-277.
    13. Lin, Yi-Feng & Ko, Chia-Chieh & Chen, Chien-Hua & Tung, Kuo-Lun & Chang, Kai-Shiun & Chung, Tsair-Wang, 2014. "Sol–gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors," Applied Energy, Elsevier, vol. 129(C), pages 25-31.
    14. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    15. Emanuele Bonamente & Lara Pelliccia & Maria Cleofe Merico & Sara Rinaldi & Alessandro Petrozzi, 2015. "The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    16. Hee, W.J. & Alghoul, M.A. & Bakhtyar, B. & Elayeb, OmKalthum & Shameri, M.A. & Alrubaih, M.S. & Sopian, K., 2015. "The role of window glazing on daylighting and energy saving in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 323-343.
    17. Knoblauch, Theresa A.K. & Trutnevyte, Evelina & Stauffacher, Michael, 2019. "Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study," Energy Policy, Elsevier, vol. 128(C), pages 807-816.
    18. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    19. Ahmed Chaibet & Moussa Boukhnifer & Nadir Ouddah & Eric Monmasson, 2020. "Experimental Sensorless Control of Switched Reluctance Motor for Electrical Powertrain System," Energies, MDPI, vol. 13(12), pages 1-15, June.
    20. Weiwei Gu & Xiaoyong Zhu & Li Quan & Yi Du, 2015. "Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications," Energies, MDPI, vol. 8(12), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:518-:d:73410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.