IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p181-d126591.html
   My bibliography  Save this article

Performance Estimation and Fault Diagnosis Based on Levenberg–Marquardt Algorithm for a Turbofan Engine

Author

Listed:
  • Junjie Lu

    (Jiangsu Province Key Laboratory Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Feng Lu

    (Jiangsu Province Key Laboratory Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Jinquan Huang

    (Jiangsu Province Key Laboratory Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

Establishing the schemes of accurate and computationally efficient performance estimation and fault diagnosis for turbofan engines has become a new research focus and challenges. It is able to increase reliability and stability of turbofan engine and reduce the life cycle costs. Accurate estimation of turbofan engine performance counts on thoroughly understanding the components’ performance, which is described by component characteristic maps and the fault of each component can be regarded as the change of characteristic maps. In this paper, a novel method based on a Levenberg–Marquardt (LM) algorithm is proposed to enhance the fidelity of the performance estimation and the credibility of the fault diagnosis for the turbofan engine. The presented method utilizes the LM algorithm to figure out the operating point in the characteristic maps, preparing for performance estimation and fault diagnosis. The accuracy of the proposed method is evaluated for estimating performance parameters in the transient case with Rayleigh process noise and Gaussian measurement noise. The comparison among the extended Kalman filter (EKF) method, the particle filter (PF) method and the proposed method is implemented in the abrupt fault case and the gradual degeneration case and it has been shown that the proposed method has the capability to lead to more accurate result for performance estimation and fault diagnosis of turbofan engine than current popular EKF and PF diagnosis methods.

Suggested Citation

  • Junjie Lu & Feng Lu & Jinquan Huang, 2018. "Performance Estimation and Fault Diagnosis Based on Levenberg–Marquardt Algorithm for a Turbofan Engine," Energies, MDPI, vol. 11(1), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:181-:d:126591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Shun-Peng & Huang, Hong-Zhong & Peng, Weiwen & Wang, Hai-Kun & Mahadevan, Sankaran, 2016. "Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Aghayari & Heydar Maddah & Mohammad Hossein Ahmadi & Wei-Mon Yan & Nahid Ghasemi, 2018. "Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions," Energies, MDPI, vol. 11(5), pages 1-16, May.
    2. Qianjing Chen & Jinquan Huang & Muxuan Pan & Feng Lu, 2019. "A Novel Real-Time Mechanism Modeling Approach for Turbofan Engine," Energies, MDPI, vol. 12(19), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiao-Yang & Chen, Wen-Bin & Kang, Rui, 2021. "Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Liu, Xintian & Mao, Kui & Wang, Xiaolan & Wang, Xu & Wang, Yansong, 2020. "A modified quality loss model of service life prediction for products via wear regularity," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Zhongzhe Chen & Shuchen Cao & Zijian Mao, 2017. "Remaining Useful Life Estimation of Aircraft Engines Using a Modified Similarity and Supporting Vector Machine (SVM) Approach," Energies, MDPI, vol. 11(1), pages 1-14, December.
    4. Mohammad Ali Farsi & S. Masood Hosseini, 2019. "Statistical distributions comparison for remaining useful life prediction of components via ANN," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 429-436, June.
    5. Rong Yuan & Debiao Meng & Haiqing Li, 2016. "Multidisciplinary reliability design optimization using an enhanced saddlepoint approximation in the framework of sequential optimization and reliability analysis," Journal of Risk and Reliability, , vol. 230(6), pages 570-578, December.
    6. Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
    7. Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    8. Lu, Yaohui & Zheng, Heyan & Zeng, Jing & Chen, Tianli & Wu, Pingbo, 2019. "Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 221-232.
    9. Xia, Jun & Feng, Yunwen & Teng, Da & Chen, Junyu & Song, Zhicen, 2022. "Distance self-attention network method for remaining useful life estimation of aeroengine with parallel computing," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Zhong, Shisheng & Tan, Zhixue & Lin, Lin, 2019. "Long-term prediction of system degradation with similarity analysis of multivariate patterns," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 101-109.
    11. Wei Jiang & Yanhe Xu & Yahui Shan & Han Liu, 2018. "Degradation Tendency Measurement of Aircraft Engines Based on FEEMD Permutation Entropy and Regularized Extreme Learning Machine Using Multi-Sensor Data," Energies, MDPI, vol. 11(12), pages 1-18, November.
    12. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    13. Ahmed Zohair Djeddi & Ahmed Hafaifa & Abdellah Kouzou & Salam Abudura, 2017. "Exploration of reliability algorithms using modified Weibull distribution: application on gas turbine," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1885-1894, November.
    14. Aizpurua, J.I. & Stewart, B.G. & McArthur, S.D.J. & Penalba, M. & Barrenetxea, M. & Muxika, E. & Ringwood, J.V., 2022. "Probabilistic forecasting informed failure prognostics framework for improved RUL prediction under uncertainty: A transformer case study," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    15. Jaehyeok Doh, 2023. "Bayesian inference-based prognosis of fatigue damage for MPPO polymer using Zhurkov fatigue life model," Journal of Risk and Reliability, , vol. 237(4), pages 636-653, August.
    16. Jia-Qi, Liu & Yun-Wen, Feng & Da, Teng & Jun-Yu, Chen & Cheng, Lu, 2023. "Operational reliability evaluation and analysis framework of civil aircraft complex system based on intelligent extremum machine learning model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Wang, Run-Zi & Gu, Hang-Hang & Zhu, Shun-Peng & Li, Kai-Shang & Wang, Ji & Wang, Xiao-Wei & Hideo, Miura & Zhang, Xian-Cheng & Tu, Shan-Tung, 2022. "A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    18. Shen, Xingkeng & Feng, Kaixuan & Xu, Heming & Wang, Guangqiang & Zhang, Yishang & Dai, Ying & Yun, Wanying, 2023. "Reliability analysis of bending fatigue life of hydraulic pipeline," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Gao, Hai-Feng & Wang, Yu-Hang & Li, Yang & Zio, Enrico, 2024. "Distributed-collaborative surrogate modeling approach for creep-fatigue reliability assessment of turbine blades considering multi-source uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    20. Sun, Bo & Fan, Xuejun & van Driel, Willem & Cui, Chengqiang & Zhang, Guoqi, 2018. "A stochastic process based reliability prediction method for LED driver," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 140-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:181-:d:126591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.