IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v184y2019icp101-109.html
   My bibliography  Save this article

Long-term prediction of system degradation with similarity analysis of multivariate patterns

Author

Listed:
  • Zhong, Shisheng
  • Tan, Zhixue
  • Lin, Lin

Abstract

To forecast the long-term degradation behavior of mechanical systems, a method named Distance Based Sequential Aggregation with Gaussian Mixture Model (DBSA-GMM) that completes predictions with two steps was proposed: first, it calculates the statistical distances (SD-s) of the objective degradation signature pattern to historical precursors, then, it uses the SD-S to generate hypothetical Gaussian estimations of the objective features, and synthesizes these Gaussians to build up Gaussian Mixture Model (GMM) approximations of feature Probability Density Functions (PDF-s) with a newly proposed algorithm called Descending Order Aggregation (DOA). DBSA-GMM was applied in the condition prediction of a fleet of commercial aero-engines and showed advantageous prediction precision over Auto-Regressive Moving Average (ARMA), Back Propagation Artificial Neural Network (BP-ANN), and former similarity based prediction (SBP) methods. Meanwhile, DOA was also validated to be with higher generalization ability with additional tests on outlier samples against Kernel Density Estimation (KDE) method.

Suggested Citation

  • Zhong, Shisheng & Tan, Zhixue & Lin, Lin, 2019. "Long-term prediction of system degradation with similarity analysis of multivariate patterns," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 101-109.
  • Handle: RePEc:eee:reensy:v:184:y:2019:i:c:p:101-109
    DOI: 10.1016/j.ress.2017.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017306221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Shun-Peng & Huang, Hong-Zhong & Peng, Weiwen & Wang, Hai-Kun & Mahadevan, Sankaran, 2016. "Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Baorui & Xia, Ye & Li, Qi, 2022. "An extreme value prediction method based on clustering algorithm," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xintian & Mao, Kui & Wang, Xiaolan & Wang, Xu & Wang, Yansong, 2020. "A modified quality loss model of service life prediction for products via wear regularity," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Mohammad Ali Farsi & S. Masood Hosseini, 2019. "Statistical distributions comparison for remaining useful life prediction of components via ANN," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 429-436, June.
    3. Rong Yuan & Debiao Meng & Haiqing Li, 2016. "Multidisciplinary reliability design optimization using an enhanced saddlepoint approximation in the framework of sequential optimization and reliability analysis," Journal of Risk and Reliability, , vol. 230(6), pages 570-578, December.
    4. Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
    5. Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    6. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    7. Ahmed Zohair Djeddi & Ahmed Hafaifa & Abdellah Kouzou & Salam Abudura, 2017. "Exploration of reliability algorithms using modified Weibull distribution: application on gas turbine," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1885-1894, November.
    8. Jia-Qi, Liu & Yun-Wen, Feng & Da, Teng & Jun-Yu, Chen & Cheng, Lu, 2023. "Operational reliability evaluation and analysis framework of civil aircraft complex system based on intelligent extremum machine learning model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Wang, Run-Zi & Gu, Hang-Hang & Zhu, Shun-Peng & Li, Kai-Shang & Wang, Ji & Wang, Xiao-Wei & Hideo, Miura & Zhang, Xian-Cheng & Tu, Shan-Tung, 2022. "A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Shen, Xingkeng & Feng, Kaixuan & Xu, Heming & Wang, Guangqiang & Zhang, Yishang & Dai, Ying & Yun, Wanying, 2023. "Reliability analysis of bending fatigue life of hydraulic pipeline," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Sun, Bo & Fan, Xuejun & van Driel, Willem & Cui, Chengqiang & Zhang, Guoqi, 2018. "A stochastic process based reliability prediction method for LED driver," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 140-146.
    12. Li, Xiao-Yang & Chen, Wen-Bin & Kang, Rui, 2021. "Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Zhongzhe Chen & Shuchen Cao & Zijian Mao, 2017. "Remaining Useful Life Estimation of Aircraft Engines Using a Modified Similarity and Supporting Vector Machine (SVM) Approach," Energies, MDPI, vol. 11(1), pages 1-14, December.
    14. Lu, Yaohui & Zheng, Heyan & Zeng, Jing & Chen, Tianli & Wu, Pingbo, 2019. "Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 221-232.
    15. Junjie Lu & Feng Lu & Jinquan Huang, 2018. "Performance Estimation and Fault Diagnosis Based on Levenberg–Marquardt Algorithm for a Turbofan Engine," Energies, MDPI, vol. 11(1), pages 1-18, January.
    16. Xia, Jun & Feng, Yunwen & Teng, Da & Chen, Junyu & Song, Zhicen, 2022. "Distance self-attention network method for remaining useful life estimation of aeroengine with parallel computing," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Wei Jiang & Yanhe Xu & Yahui Shan & Han Liu, 2018. "Degradation Tendency Measurement of Aircraft Engines Based on FEEMD Permutation Entropy and Regularized Extreme Learning Machine Using Multi-Sensor Data," Energies, MDPI, vol. 11(12), pages 1-18, November.
    18. Aizpurua, J.I. & Stewart, B.G. & McArthur, S.D.J. & Penalba, M. & Barrenetxea, M. & Muxika, E. & Ringwood, J.V., 2022. "Probabilistic forecasting informed failure prognostics framework for improved RUL prediction under uncertainty: A transformer case study," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    19. Jaehyeok Doh, 2023. "Bayesian inference-based prognosis of fatigue damage for MPPO polymer using Zhurkov fatigue life model," Journal of Risk and Reliability, , vol. 237(4), pages 636-653, August.
    20. Pan, Wei-Huang & Feng, Yun-Wen & Lu, Cheng & Liu, Jia-Qi, 2023. "Analyzing the operation reliability of aeroengine using Quick Access Recorder flight data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:184:y:2019:i:c:p:101-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.