Experimental and numerical flow investigation of Stirling engine regenerator
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2014.06.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rokni, Masoud, 2013. "Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels," Energy, Elsevier, vol. 61(C), pages 87-97.
- García, D. & Prieto, J.I., 2012. "A non-tubular Stirling engine heater for a micro solar power unit," Renewable Energy, Elsevier, vol. 46(C), pages 127-136.
- Rogdakis, E.D. & Antonakos, G.D. & Koronaki, I.P., 2012. "Thermodynamic analysis and experimental investigation of a Solo V161 Stirling cogeneration unit," Energy, Elsevier, vol. 45(1), pages 503-511.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Al-Nimr, Moh'd & Khashan, Saud A. & Al-Oqla, Hashem, 2023. "Novel techniques to enhance the performance of Stirling engines integrated with solar systems," Renewable Energy, Elsevier, vol. 202(C), pages 894-906.
- Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
- Miguel Torres García & Elisa Carvajal Trujillo & José Antonio Vélez Godiño & David Sánchez Martínez, 2018. "Thermodynamic Model for Performance Analysis of a Stirling Engine Prototype," Energies, MDPI, vol. 11(10), pages 1-25, October.
- Nielsen, Anders S. & York, Brayden T. & MacDonald, Brendan D., 2019. "Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Yu, Minjie & Xu, Lei & Cui, Haichuan & Liu, Zhichun & Liu, Wei, 2024. "Characteristics and potential of a novel inclined-flow stirling regenerator constructed by sinusoidal corrugated channels," Energy, Elsevier, vol. 288(C).
- Al-Nimr, Moh'd & Khashan, Saud & Al-Oqla, Hashem, 2023. "A novel hybrid pyroelectric-Stirling engine power generation system," Energy, Elsevier, vol. 282(C).
- Sadrameli, S.M., 2016. "Mathematical models for the simulation of thermal regenerators: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 462-476.
- Araoz, Joseph A. & Salomon, Marianne & Alejo, Lucio & Fransson, Torsten H., 2015. "Numerical simulation for the design analysis of kinematic Stirling engines," Applied Energy, Elsevier, vol. 159(C), pages 633-650.
- Mohammadi, Mohammad Amin & Jafarian, Ali, 2018. "CFD simulation to investigate hydrodynamics of oscillating flow in a beta-type Stirling engine," Energy, Elsevier, vol. 153(C), pages 287-300.
- González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Las-Heras-Casas, J. & Sala, J.M., 2015. "Influence of the regulation framework on the feasibility of a Stirling engine-based residential micro-CHP installation," Energy, Elsevier, vol. 84(C), pages 575-588.
- Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hooshang, M. & Askari Moghadam, R. & AlizadehNia, S., 2016. "Dynamic response simulation and experiment for gamma-type Stirling engine," Renewable Energy, Elsevier, vol. 86(C), pages 192-205.
- Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
- Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
- Yang, Fei & Gu, Jianmin & Ye, Luhan & Zhang, Zuoxiang & Rao, Gaofeng & Liang, Yachun & Wen, Kechun & Zhao, Jiyun & Goodenough, John B. & He, Weidong, 2016. "Justifying the significance of Knudsen diffusion in solid oxide fuel cells," Energy, Elsevier, vol. 95(C), pages 242-246.
- Rokni, Masoud, 2014. "Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine," Energy, Elsevier, vol. 76(C), pages 19-31.
- Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
- Moradpoor, Iraj & Ebrahimi, Masood, 2019. "Thermo-environ analyses of a novel trigeneration cycle based on clean technologies of molten carbonate fuel cell, stirling engine and Kalina cycle," Energy, Elsevier, vol. 185(C), pages 1005-1016.
- Obara, Shin'ya & Morel Rios, Jorge Ricardo & Okada, Masaki, 2015. "Control of cyclic fluctuations in solid oxide fuel cell cogeneration accompanied by photovoltaics," Energy, Elsevier, vol. 91(C), pages 994-1008.
- Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
- Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
- Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
- Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
- Yahya, Abir & Ferrero, Domenico & Dhahri, Hacen & Leone, Pierluigi & Slimi, Khalifa & Santarelli, Massimo, 2018. "Electrochemical performance of solid oxide fuel cell: Experimental study and calibrated model," Energy, Elsevier, vol. 142(C), pages 932-943.
- Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
- Toro, Claudia & Lior, Noam, 2017. "Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation," Energy, Elsevier, vol. 120(C), pages 549-564.
- Majidniya, Mahdi & Remy, Benjamin & Boileau, Thierry & Zandi, Majid, 2021. "Free Piston Stirling Engine as a new heat recovery option for an Internal Reforming Solid Oxide Fuel Cell," Renewable Energy, Elsevier, vol. 171(C), pages 1188-1201.
- Paul, Christopher J. & Engeda, Abraham, 2015. "Modeling a complete Stirling engine," Energy, Elsevier, vol. 80(C), pages 85-97.
- Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
- Yuan, Zhenyu & Yang, Jie & Zhang, Yufeng, 2015. "A self-adaptive supply method of micro direct methanol fuel cell," Energy, Elsevier, vol. 91(C), pages 1064-1069.
- Masoud Rokni, 2016. "Performance Comparison on Repowering of a Steam Power Plant with Gas Turbines and Solid Oxide Fuel Cells," Energies, MDPI, vol. 9(6), pages 1-22, May.
More about this item
Keywords
Stirling engine regenerator; Test bench; Oscillating flow; Pressure drop; Thermal efficiency; Porous media;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:800-812. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.