IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp169-181.html
   My bibliography  Save this article

Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism

Author

Listed:
  • Karabulut, Halit
  • Okur, Melih
  • Halis, Serdar
  • Altin, Murat

Abstract

This study concerns with the thermodynamic and dynamic analysis of an alpha type Stirling engine with Scotch-yoke piston driving mechanism. The thermodynamic aspect of the analysis is treated with a polytrophic nodal approximation. The pressure of nodal volumes is calculated with modified Schmidt formula which takes into account the pressure differences between nodal volumes caused by flow friction. The flow friction is calculated with adapted Darcy formula. The variation of the gas temperature in nodal volumes are calculated via the first law of thermodynamics given for unsteady open systems. The dynamic behavior of the engine is modeled via the motion equations of pistons and crankshaft. For a 2 kW nominal shaft power and 1400 rpm nominal speed, dimensions and working conditions of the engine were investigated by using realistic inputs. It was estimated that an engine having about 1.44 L swept volume, 1000 K hot source temperature, 400 K cold source temperature, 9050 cm2 total inner heat transfer area, 6 bar charge pressure, 2000 W/m2K inner heat transfer coefficient may produce more than 2 kW shaft power. For 142 rad/s average crankshaft speed the optimum thermal efficiency and torque of the engine were determined as 31% and 15.63 Nm respectively.

Suggested Citation

  • Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:169-181
    DOI: 10.1016/j.energy.2018.11.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218322898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karabulut, Halit & Aksoy, Fatih & Öztürk, Erkan, 2009. "Thermodynamic analysis of a β type Stirling engine with a displacer driving mechanism by means of a lever," Renewable Energy, Elsevier, vol. 34(1), pages 202-208.
    2. Li, Ruijie & Grosu, Lavinia & Li, Wei, 2017. "New polytropic model to predict the performance of beta and gamma type Stirling engine," Energy, Elsevier, vol. 128(C), pages 62-76.
    3. Tlili, Iskander & Timoumi, Youssef & Nasrallah, Sassi Ben, 2008. "Analysis and design consideration of mean temperature differential Stirling engine for solar application," Renewable Energy, Elsevier, vol. 33(8), pages 1911-1921.
    4. Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
    5. Altin, Murat & Okur, Melih & Ipci, Duygu & Halis, Serdar & Karabulut, Halit, 2018. "Thermodynamic and dynamic analysis of an alpha type Stirling engine with Scotch Yoke mechanism," Energy, Elsevier, vol. 148(C), pages 855-865.
    6. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2011. "Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models," Renewable Energy, Elsevier, vol. 36(2), pages 714-725.
    7. Campos, M.C. & Vargas, J.V.C. & Ordonez, J.C., 2012. "Thermodynamic optimization of a Stirling engine," Energy, Elsevier, vol. 44(1), pages 902-910.
    8. Kongtragool, Bancha & Wongwises, Somchai, 2005. "Investigation on power output of the gamma-configuration low temperature differential Stirling engines," Renewable Energy, Elsevier, vol. 30(3), pages 465-476.
    9. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2014. "Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines," Energy, Elsevier, vol. 69(C), pages 873-890.
    10. Timoumi, Youssef & Tlili, Iskander & Ben Nasrallah, Sassi, 2008. "Performance optimization of Stirling engines," Renewable Energy, Elsevier, vol. 33(9), pages 2134-2144.
    11. Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
    12. Timoumi, Youssef & Tlili, Iskander & Ben Nasrallah, Sassi, 2008. "Design and performance optimization of GPU-3 Stirling engines," Energy, Elsevier, vol. 33(7), pages 1100-1114.
    13. Mou, Jian & Hong, Guotong, 2017. "Startup mechanism and power distribution of free piston Stirling engine," Energy, Elsevier, vol. 123(C), pages 655-663.
    14. Bataineh, Khaled, 2018. "Mathematical formulation of alpha -type Stirling engine with Ross Yoke mechanism," Energy, Elsevier, vol. 164(C), pages 1178-1199.
    15. Yang, Hang-Suin & Cheng, Chin-Hsiang, 2017. "Development of a beta-type Stirling engine with rhombic-drive mechanism using a modified non-ideal adiabatic model," Applied Energy, Elsevier, vol. 200(C), pages 62-72.
    16. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2016. "Analytical closed-form model for predicting the power and efficiency of Stirling engines based on a comprehensive numerical model and the genetic programming," Energy, Elsevier, vol. 98(C), pages 324-339.
    17. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    18. Yang, Hang-Suin & Cheng, Chin-Hsiang & Huang, Shang-Ting, 2018. "A complete model for dynamic simulation of a 1-kW class beta-type Stirling engine with rhombic-drive mechanism," Energy, Elsevier, vol. 161(C), pages 892-906.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    2. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    3. Xiao, Lei & Luo, Kaiqi & Hu, Jianying & Jia, Zilong & Chen, Geng & Xu, Jingyuan & Luo, Ercang, 2023. "Transient and steady performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 273(C).
    4. Cheng, Chin-Hsiang & Yang, Hang-Suin & Tan, Yi-Han, 2022. "Theoretical model of a α-type four-cylinder double-acting stirling engine based on energy method," Energy, Elsevier, vol. 238(PA).
    5. Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
    6. Wróblewski, Piotr, 2023. "Investigation of energy losses of the internal combustion engine taking into account the correlation of the hydrophobic and hydrophilic," Energy, Elsevier, vol. 264(C).
    7. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
    2. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    3. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).
    4. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "A transient one-dimensional numerical model for kinetic Stirling engine," Applied Energy, Elsevier, vol. 183(C), pages 775-790.
    5. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    6. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2015. "A new thermal model based on polytropic numerical simulation of Stirling engines," Applied Energy, Elsevier, vol. 141(C), pages 143-159.
    7. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2014. "Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines," Energy, Elsevier, vol. 69(C), pages 873-890.
    8. Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
    9. Ni, Mingjiang & Shi, Bingwei & Xiao, Gang & Peng, Hao & Sultan, Umair & Wang, Shurong & Luo, Zhongyang & Cen, Kefa, 2016. "Improved Simple Analytical Model and experimental study of a 100W β-type Stirling engine," Applied Energy, Elsevier, vol. 169(C), pages 768-787.
    10. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2016. "Analytical closed-form model for predicting the power and efficiency of Stirling engines based on a comprehensive numerical model and the genetic programming," Energy, Elsevier, vol. 98(C), pages 324-339.
    11. Eid, Eldesouki I. & Khalaf-Allah, Reda A. & Soliman, Ahmed M. & Easa, Ammar S., 2019. "Performance of a beta Stirling refrigerator with tubular evaporator and condenser having inserted twisted tapes and driven by a solar energy heat engine," Renewable Energy, Elsevier, vol. 135(C), pages 1314-1326.
    12. Shulin Wang & Baiao Liu & Gang Xiao & Mingjiang Ni, 2021. "A Potential Method to Predict Performance of Positive Stirling Cycles Based on Reverse Ones," Energies, MDPI, vol. 14(21), pages 1-25, October.
    13. Ahmed, Fawad & Zhu, Shunmin & Yu, Guoyao & Luo, Ercang, 2022. "A potent numerical model coupled with multi-objective NSGA-II algorithm for the optimal design of Stirling engine," Energy, Elsevier, vol. 247(C).
    14. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    15. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    16. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    17. Li, Ruijie & Grosu, Lavinia & Li, Wei, 2017. "New polytropic model to predict the performance of beta and gamma type Stirling engine," Energy, Elsevier, vol. 128(C), pages 62-76.
    18. İncili, Veysel & Karaca Dolgun, Gülşah & Keçebaş, Ali & Ural, Tolga, 2023. "Energy and exergy analyses of a coal-fired micro-CHP system coupled engine as a domestic solution," Energy, Elsevier, vol. 274(C).
    19. Bataineh, Khaled, 2018. "Mathematical formulation of alpha -type Stirling engine with Ross Yoke mechanism," Energy, Elsevier, vol. 164(C), pages 1178-1199.
    20. Chin-Hsiang Cheng & Duc-Thuan Phung, 2021. "Numerical Optimization of the β-Type Stirling Engine Performance Using the Variable-Step Simplified Conjugate Gradient Method," Energies, MDPI, vol. 14(23), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:169-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.