IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2513-d171257.html
   My bibliography  Save this article

CFD Steady Model Applied to a Biomass Boiler Operating in Air Enrichment Conditions

Author

Listed:
  • Miguel Ángel Gómez

    (Defense University Center, Spanish Naval Academy, Plaza de España s/n 36900 Marín, Spain)

  • Rubén Martín

    (Industrial Engineering School, University of Vigo, Lagoas-Marcosende s/n 36310 Vigo, Spain)

  • Joaquín Collazo

    (Industrial Engineering School, University of Vigo, Lagoas-Marcosende s/n 36310 Vigo, Spain)

  • Jacobo Porteiro

    (Industrial Engineering School, University of Vigo, Lagoas-Marcosende s/n 36310 Vigo, Spain)

Abstract

A numerical model is proposed to perform CFD simulations of biomass boilers working in different operating conditions and analyse the results with low computational effort. The model is based on steady fluxes that represent the biomass thermal conversion stages through the conservation of mass, energy, and chemical species in the packed bed region. The conversion reactions are combined with heat and mass transfer submodels that release the combustion products to the gas flow. The gas flow is calculated through classical finite volume techniques to model the transport and reaction phenomena. The overall process is calculated in a steady state with a fast, efficient, and reasonably accurate method, which allows the results to converge without long computation times. The modelling is applied to the simulation of a 30 kW domestic boiler, and the results are compared with experimental tests with reasonably good results for such a simple model. The model is also applied to study the effect of air enrichment in boiler performance and gas emissions. The boiler operation is simulated using different oxygen concentrations that range from 21% to 90% in the feeding air, and parameters such as the heat transferred, fume temperatures, and emissions of CO, CO 2 , and NO x are analysed. The results show that with a moderated air enrichment of 40% oxygen, the energy performance can be increased by 8%, CO emissions are noticeably reduced, and NO x remains practically stable.

Suggested Citation

  • Miguel Ángel Gómez & Rubén Martín & Joaquín Collazo & Jacobo Porteiro, 2018. "CFD Steady Model Applied to a Biomass Boiler Operating in Air Enrichment Conditions," Energies, MDPI, vol. 11(10), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2513-:d:171257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khodaei, Hassan & Al-Abdeli, Yasir M. & Guzzomi, Ferdinando & Yeoh, Guan H., 2015. "An overview of processes and considerations in the modelling of fixed-bed biomass combustion," Energy, Elsevier, vol. 88(C), pages 946-972.
    2. Li Yang & Fang Liu & Zhengchang Song & Kunlei Liu & Kozo Saito, 2018. "3D Numerical Study of Multiphase Counter-Current Flow within a Packed Bed for Post Combustion Carbon Dioxide Capture," Energies, MDPI, vol. 11(6), pages 1-14, June.
    3. Yu, Zhaosheng & Ma, Xiaoqian & Liao, Yanfen, 2010. "Mathematical modeling of combustion in a grate-fired boiler burning straw and effect of operating conditions under air- and oxygen-enriched atmospheres," Renewable Energy, Elsevier, vol. 35(5), pages 895-903.
    4. Gyujin Kim & Sunyoung Moon & Seungha Lee & Kyoungdoug Min, 2017. "Numerical Analysis of the Combustion and Emission Characteristics of Diesel Engines with Multiple Injection Strategies Using a Modified 2-D Flamelet Model," Energies, MDPI, vol. 10(9), pages 1-17, August.
    5. Carmelina Abagnale & Maria Cristina Cameretti & Roberta De Robbio & Raffaele Tuccillo, 2017. "Thermal Cycle and Combustion Analysis of a Solar-Assisted Micro Gas Turbine," Energies, MDPI, vol. 10(6), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maulana G. Nugraha & Harwin Saptoadi & Muslikhin Hidayat & Bengt Andersson & Ronnie Andersson, 2021. "Particulate Matter Reduction in Residual Biomass Combustion," Energies, MDPI, vol. 14(11), pages 1-23, June.
    2. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    3. Hang Yin & Yingai Jin & Liang Li & Wenbo Lv, 2022. "Numerical Investigation on the Impact of Exergy Analysis and Structural Improvement in Power Plant Boiler through Co-Simulation," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Tianbao & Yin, Chungen & Ma, Wenchao & Chen, Guanyi, 2019. "Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation," Applied Energy, Elsevier, vol. 247(C), pages 127-139.
    2. Karim, Md Rezwanul & Bhuiyan, Arafat Ahmed & Sarhan, Abd Alhamid Rafea & Naser, Jamal, 2020. "CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler," Renewable Energy, Elsevier, vol. 146(C), pages 1416-1428.
    3. Mohammad Hosseini Rahdar & Fuzhan Nasiri, 2020. "Operation Adaptation of Moving Bed Biomass Combustors under Various Waste Fuel Conditions," Energies, MDPI, vol. 13(23), pages 1-18, December.
    4. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    5. Yin, Chungen & Rosendahl, Lasse & Clausen, Sønnik & Hvid, Søren L., 2012. "Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons," Energy, Elsevier, vol. 41(1), pages 473-482.
    6. González, William A. & Pérez, Juan F. & Chapela, Sergio & Porteiro, Jacobo, 2018. "Numerical analysis of wood biomass packing factor in a fixed-bed gasification process," Renewable Energy, Elsevier, vol. 121(C), pages 579-589.
    7. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    8. Su, Xianqiang & Fang, Qingyan & Ma, Lun & Yin, Chungen & Chen, Xinke & Zhang, Cheng & Tan, Peng & Chen, Gang, 2024. "Mathematical modeling of a 30 MW biomass-fired grate boiler: A reliable baseline model taking fuel-bed structure into account," Energy, Elsevier, vol. 288(C).
    9. Zhaojie Shen & Wenzheng Cui & Xiaodong Ju & Zhongchang Liu & Shaohua Wu & Jianguo Yang, 2018. "Numerical Investigation on Effects of Assigned EGR Stratification on a Heavy Duty Diesel Engine with Two-Stage Fuel Injection," Energies, MDPI, vol. 11(3), pages 1-14, February.
    10. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Djurović, D. & Nemoda, S. & Repić, B. & Dakić, D. & Adzić, M., 2015. "Influence of biomass furnace volume change on flue gases burn out process," Renewable Energy, Elsevier, vol. 76(C), pages 1-6.
    12. Roberta De Robbio & Maria Cristina Cameretti & Salvatore Agizza, 2023. "Design and Thermo-Economic Analysis of an Integrated Solar Field Micro Gas Turbine Biomass Gasifier and Organic Rankine Cycle System," Energies, MDPI, vol. 16(20), pages 1-25, October.
    13. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    14. Caposciutti, Gianluca & Antonelli, Marco, 2018. "Experimental investigation on air displacement and air excess effect on CO, CO2 and NOx emissions of a small size fixed bed biomass boiler," Renewable Energy, Elsevier, vol. 116(PA), pages 795-804.
    15. Su, Xianqiang & Chen, Xinke & Fang, Qingyan & Ma, Lun & Tan, Peng & Zhang, Cheng & Chen, Gang & Yin, Chungen, 2024. "An integrated model for flexible simulation of biomass combustion in a travelling grate-fired boiler," Energy, Elsevier, vol. 307(C).
    16. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
    17. Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
    18. Gang Wu & Xinyi Zhou & Tie Li, 2019. "Temporal Evolution of Split-Injected Fuel Spray at Elevated Chamber Pressures," Energies, MDPI, vol. 12(22), pages 1-23, November.
    19. Xu Zheng & Nan Zhou & Quan Zhou & Yi Qiu & Ruijun Liu & Zhiyong Hao, 2020. "Experimental Investigation on the High-frequency Pressure Oscillation Characteristics of a Combustion Process in a DI Diesel Engine," Energies, MDPI, vol. 13(4), pages 1-25, February.
    20. Maria Cristina Cameretti & Alessandro Cappiello & Roberta De Robbio & Raffaele Tuccillo, 2020. "Comparison between Hydrogen and Syngas Fuels in an Integrated Micro Gas Turbine/Solar Field with Storage," Energies, MDPI, vol. 13(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2513-:d:171257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.