IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6352-d454689.html
   My bibliography  Save this article

Operation Adaptation of Moving Bed Biomass Combustors under Various Waste Fuel Conditions

Author

Listed:
  • Mohammad Hosseini Rahdar

    (Department of Building, Civil & Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

  • Fuzhan Nasiri

    (Department of Building, Civil & Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

Abstract

This paper analyzes a moving grate biomass boiler operating with three alternative waste fuels, including biomass pellets, wood waste, and refuse-derived fuel (RDF) from a combination of thermal, economic, and environmental perspectives. The focus of this paper is on system functionality adaptation to retrofit the current systems operational conditions. A one-dimensional numerical bed model integrated with a black-box overbed model was developed to carefully investigate the fuel bed’s thermal characteristics, as well as the boiler’s output. According to the results, the system operates more efficiently under the biomass pellets feeding and annually generates 548 GJ heat, while it drops significantly in other scenarios. The system was economically evaluated based on a 25-year life cycle cost analysis. Subsequently, an internal rate of return (IRR) of 36% was calculated for biomass pellets, while the value reduced by 50% and 27% regarding wood waste and RDF, respectively. The fuel cost was identified as the main contributor to the total life cycle cost of the heating system, regardless of which feeding fuel was utilized. A long-term environmental impacts assessment of the boiler operation emerged, to show how plant-based fuels can significantly decrease the impacts of climate change that have originated from fossil fuel usage. The current study concludes that all the proposed scenarios are feasible to different degrees, and can extensively benefit a diverse set of energy sectors.

Suggested Citation

  • Mohammad Hosseini Rahdar & Fuzhan Nasiri, 2020. "Operation Adaptation of Moving Bed Biomass Combustors under Various Waste Fuel Conditions," Energies, MDPI, vol. 13(23), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6352-:d:454689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. González, William A. & Pérez, Juan F. & Chapela, Sergio & Porteiro, Jacobo, 2018. "Numerical analysis of wood biomass packing factor in a fixed-bed gasification process," Renewable Energy, Elsevier, vol. 121(C), pages 579-589.
    2. Nabavi, Vahid & Azizi, Majid & Tarmian, Asghar & Ray, Charles David, 2020. "Feasibility study on the production and consumption of wood pellets in Iran to meet return-on-investment and greenhouse gas emissions targets," Renewable Energy, Elsevier, vol. 151(C), pages 1-20.
    3. Alexandre Boriouchkine & Sirkka-Liisa Jämsä-Jounela, 2016. "Simplification of a Mechanistic Model of Biomass Combustion for On-Line Computations," Energies, MDPI, vol. 9(9), pages 1-25, September.
    4. Yu, Zhaosheng & Ma, Xiaoqian & Liao, Yanfen, 2010. "Mathematical modeling of combustion in a grate-fired boiler burning straw and effect of operating conditions under air- and oxygen-enriched atmospheres," Renewable Energy, Elsevier, vol. 35(5), pages 895-903.
    5. Xiaodan Liu & Xuping Feng & Lingxia Huang & Yong He, 2020. "Rapid Determination of Wood and Rice Husk Pellets’ Proximate Analysis and Heating Value," Energies, MDPI, vol. 13(14), pages 1-13, July.
    6. Chowdhury, Mohammad Shyfur Rahman & Azad, A.K. & Karim, Md. Rezwanul & Naser, Jamal & Bhuiyan, Arafat A., 2019. "Reduction of GHG emissions by utilizing biomass co-firing in a swirl-stabilized furnace," Renewable Energy, Elsevier, vol. 143(C), pages 1201-1209.
    7. Wang, Kui & Zhang, Yuanyuan & Sekelj, Gasper & Hopke, Philip K., 2019. "Economic analysis of a field monitored residential wood pellet boiler heating system in New York State," Renewable Energy, Elsevier, vol. 133(C), pages 500-511.
    8. Yin, Chungen & Rosendahl, Lasse & Clausen, Sønnik & Hvid, Søren L., 2012. "Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons," Energy, Elsevier, vol. 41(1), pages 473-482.
    9. Khodaei, Hassan & Al-Abdeli, Yasir M. & Guzzomi, Ferdinando & Yeoh, Guan H., 2015. "An overview of processes and considerations in the modelling of fixed-bed biomass combustion," Energy, Elsevier, vol. 88(C), pages 946-972.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim, Md Rezwanul & Bhuiyan, Arafat Ahmed & Sarhan, Abd Alhamid Rafea & Naser, Jamal, 2020. "CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler," Renewable Energy, Elsevier, vol. 146(C), pages 1416-1428.
    2. Su, Xianqiang & Fang, Qingyan & Ma, Lun & Yin, Chungen & Chen, Xinke & Zhang, Cheng & Tan, Peng & Chen, Gang, 2024. "Mathematical modeling of a 30 MW biomass-fired grate boiler: A reliable baseline model taking fuel-bed structure into account," Energy, Elsevier, vol. 288(C).
    3. Gu, Tianbao & Yin, Chungen & Ma, Wenchao & Chen, Guanyi, 2019. "Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation," Applied Energy, Elsevier, vol. 247(C), pages 127-139.
    4. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    5. Miguel Ángel Gómez & Rubén Martín & Joaquín Collazo & Jacobo Porteiro, 2018. "CFD Steady Model Applied to a Biomass Boiler Operating in Air Enrichment Conditions," Energies, MDPI, vol. 11(10), pages 1-18, September.
    6. Tu, Yaojie & Zhou, Anqi & Xu, Mingchen & Yang, Wenming & Siah, Keng Boon & Subbaiah, Prabakaran, 2018. "NOX reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology," Applied Energy, Elsevier, vol. 220(C), pages 962-973.
    7. Garbacz, Przemysław & Wejkowski, Robert, 2020. "Numerical research on the SNCR method in a grate boiler equipped with the innovative FJBS system," Energy, Elsevier, vol. 207(C).
    8. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    9. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    10. Yin, Chungen & Rosendahl, Lasse & Clausen, Sønnik & Hvid, Søren L., 2012. "Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons," Energy, Elsevier, vol. 41(1), pages 473-482.
    11. González, William A. & Pérez, Juan F. & Chapela, Sergio & Porteiro, Jacobo, 2018. "Numerical analysis of wood biomass packing factor in a fixed-bed gasification process," Renewable Energy, Elsevier, vol. 121(C), pages 579-589.
    12. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    13. Hu, Zhongfa & Wang, Xuebin & Zhang, Lan & Yang, Shunzhi & Ruan, Renhui & Bai, Shengjie & Zhu, Yiming & Wang, Liang & Mikulčić, Hrvoje & Tan, Houzhang, 2020. "Emission characteristics of particulate matters from a 30 MW biomass-fired power plant in China," Renewable Energy, Elsevier, vol. 155(C), pages 225-236.
    14. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Kuznetsov, G.V. & Syrodoy, S.V. & Nigay, N.A. & Maksimov, V.I. & Gutareva, N.Yu., 2021. "Features of the processes of heat and mass transfer when drying a large thickness layer of wood biomass," Renewable Energy, Elsevier, vol. 169(C), pages 498-511.
    16. Djurović, D. & Nemoda, S. & Repić, B. & Dakić, D. & Adzić, M., 2015. "Influence of biomass furnace volume change on flue gases burn out process," Renewable Energy, Elsevier, vol. 76(C), pages 1-6.
    17. Caposciutti, Gianluca & Antonelli, Marco, 2018. "Experimental investigation on air displacement and air excess effect on CO, CO2 and NOx emissions of a small size fixed bed biomass boiler," Renewable Energy, Elsevier, vol. 116(PA), pages 795-804.
    18. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
    19. Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
    20. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6352-:d:454689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.