IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2932-d1104717.html
   My bibliography  Save this article

Biomass Combustion Modeling Using OpenFOAM: Development of a Simple Computational Model and Study of the Combustion Performance of Lippia origanoides Bagasse

Author

Listed:
  • Gabriel Fernando García Sánchez

    (Research Group on Energy and Environment (GIEMA), School of Mechanical Engineering, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga 680002, Colombia)

  • Jorge Luis Chacón Velasco

    (Research Group on Energy and Environment (GIEMA), School of Mechanical Engineering, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga 680002, Colombia)

  • David Alfredo Fuentes Díaz

    (Research Group on Energy and Environment (GIEMA), School of Mechanical Engineering, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga 680002, Colombia)

  • Yesid Javier Rueda-Ordóñez

    (Research Group on Energy and Environment (GIEMA), School of Mechanical Engineering, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga 680002, Colombia)

  • David Patiño

    (CINTECX, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain)

  • Juan Jesús Rico

    (CINTECX, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain)

  • Jairo René Martínez Morales

    (National Center for Agroindustrialization of Aromatic and Medicinal Tropical Vegetal Species (CENIVAM), School of Chemistry, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga 680002, Colombia)

Abstract

Combustion is the most commonly used technology to produce energy from biomass; nevertheless, there are still thermal efficiency problems in current biomass combustion furnaces and a lack of knowledge about the properties of residual biomasses that could be used as fuels. Aiming to contribute to knowledge of the potential of residual biomass for energy generation, this work reports on the implementation of a 2D computational model to study the combustion performance of several solid biomass fuels, and its application in the analysis of Lippia origanoides bagasse combustion. The model uses an Eulerian–Lagrangian approach; in the continuous phase, governing equations are solved, and in the dispersed phase, particles are tracked and the mass, momentum, species and energy transfer between the phases are calculated. The model was validated against experimental data from a combustor fueled by three biomasses: wood pellets, olive stone and almond shell. The results show deviations of less than 13%, with few exceptions, which indicates a good degree of agreement with experimental measurements compared with those reported by other studies on the subject. Furthermore, it was found that the stems of Lippia origanoides bagasse show similar performance to that of other biomass used as solid fuel, while the leaves present lower performance.

Suggested Citation

  • Gabriel Fernando García Sánchez & Jorge Luis Chacón Velasco & David Alfredo Fuentes Díaz & Yesid Javier Rueda-Ordóñez & David Patiño & Juan Jesús Rico & Jairo René Martínez Morales, 2023. "Biomass Combustion Modeling Using OpenFOAM: Development of a Simple Computational Model and Study of the Combustion Performance of Lippia origanoides Bagasse," Energies, MDPI, vol. 16(6), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2932-:d:1104717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khodaei, Hassan & Al-Abdeli, Yasir M. & Guzzomi, Ferdinando & Yeoh, Guan H., 2015. "An overview of processes and considerations in the modelling of fixed-bed biomass combustion," Energy, Elsevier, vol. 88(C), pages 946-972.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    2. González, William A. & Pérez, Juan F. & Chapela, Sergio & Porteiro, Jacobo, 2018. "Numerical analysis of wood biomass packing factor in a fixed-bed gasification process," Renewable Energy, Elsevier, vol. 121(C), pages 579-589.
    3. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    4. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Caposciutti, Gianluca & Antonelli, Marco, 2018. "Experimental investigation on air displacement and air excess effect on CO, CO2 and NOx emissions of a small size fixed bed biomass boiler," Renewable Energy, Elsevier, vol. 116(PA), pages 795-804.
    6. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
    7. Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
    8. Gu, Tianbao & Yin, Chungen & Ma, Wenchao & Chen, Guanyi, 2019. "Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation," Applied Energy, Elsevier, vol. 247(C), pages 127-139.
    9. Khodaei, Hassan & Guzzomi, Ferdinando & Yeoh, Guan H. & Regueiro, Araceli & Patiño, David, 2017. "An experimental study into the effect of air staging distribution and position on emissions in a laboratory scale biomass combustor," Energy, Elsevier, vol. 118(C), pages 1243-1255.
    10. Meng, Xiaoxiao & Zhou, Wei & Yan, Yonghong & Ren, Xiaohan & Ismail, Tamer M. & Sun, Rui, 2020. "Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed," Energy, Elsevier, vol. 210(C).
    11. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
    12. Tanui, J.K. & Kioni, P.N. & Mirre, T. & Nowitzki, M. & Karuri, N.W., 2020. "The influence of particle packing density on wood combustion in a fixed bed under oxy-fuel conditions," Energy, Elsevier, vol. 194(C).
    13. Karim, Md Rezwanul & Bhuiyan, Arafat Ahmed & Sarhan, Abd Alhamid Rafea & Naser, Jamal, 2020. "CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler," Renewable Energy, Elsevier, vol. 146(C), pages 1416-1428.
    14. Judt, W. & Ciupek, B. & Urbaniak, R., 2020. "Numerical study of a heat transfer process in a low power heating boiler equipped with afterburning chamber," Energy, Elsevier, vol. 196(C).
    15. Miguel Ángel Gómez & Rubén Martín & Joaquín Collazo & Jacobo Porteiro, 2018. "CFD Steady Model Applied to a Biomass Boiler Operating in Air Enrichment Conditions," Energies, MDPI, vol. 11(10), pages 1-18, September.
    16. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2021. "Energy performance of an unmixed anaerobic digester with submerged solid waste: Effects of temperature distribution," Energy, Elsevier, vol. 231(C).
    17. Caposciutti, Gianluca & Barontini, Federica & Antonelli, Marco & Tognotti, Leonardo & Desideri, Umberto, 2018. "Experimental investigation on the air excess and air displacement influence on early stage and complete combustion gaseous emissions of a small scale fixed bed biomass boiler," Applied Energy, Elsevier, vol. 216(C), pages 576-587.
    18. Araceli Regueiro & David Patiño & Jacobo Porteiro & Enrique Granada & José Luis Míguez, 2016. "Effect of Air Staging Ratios on the Burning Rate and Emissions in an Underfeed Fixed-Bed Biomass Combustor," Energies, MDPI, vol. 9(11), pages 1-16, November.
    19. Wöhler, Marius & Jaeger, Dirk & Reichert, Gabriel & Schmidl, Christoph & Pelz, Stefan K., 2017. "Influence of pellet length on performance of pellet room heaters under real life operation conditions," Renewable Energy, Elsevier, vol. 105(C), pages 66-75.
    20. Mohammad Hosseini Rahdar & Fuzhan Nasiri, 2020. "Operation Adaptation of Moving Bed Biomass Combustors under Various Waste Fuel Conditions," Energies, MDPI, vol. 13(23), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2932-:d:1104717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.