IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i5p895-903.html
   My bibliography  Save this article

Mathematical modeling of combustion in a grate-fired boiler burning straw and effect of operating conditions under air- and oxygen-enriched atmospheres

Author

Listed:
  • Yu, Zhaosheng
  • Ma, Xiaoqian
  • Liao, Yanfen

Abstract

A three-dimensional mathematical model has been developed as a tool for furnace structure design and operation conditions optimization when the straw combustion is in oxygen-enriched or conventional air atmospheres. Mathematical methods have been used based on a combination of FLIC (A fluid Dynamic Incinerator Code) code for the in-bed incineration and commercial software FLUENT for the over-bed combustion. Oxygen-enriched atmospheres promote the destruction of most pollutants due to the high oxygen partial pressures and temperatures, which is reflected by very low residual amounts of organic combustion by-products in the bottom ash and flue gas of the straw-fired boiler unit. The predictions indicated that the maximum combustion temperature is around 1500K, CO emission is 201vppm and O2 concentration is about 6.9vol% at furnace exit, and it is shown that mathematical models can serve as a reliable tool for detailed analysis of straw combustion processes in the packed-bed furnace when compared with literature measurement data. In comparison to traditional straw combustion, the deviation of flue gas CO and NO is 27.5% and 62.1%, respectively. The numerical simulation results showed that combustion under the oxygen-enriched atmosphere excelled combustion under conventional air.

Suggested Citation

  • Yu, Zhaosheng & Ma, Xiaoqian & Liao, Yanfen, 2010. "Mathematical modeling of combustion in a grate-fired boiler burning straw and effect of operating conditions under air- and oxygen-enriched atmospheres," Renewable Energy, Elsevier, vol. 35(5), pages 895-903.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:5:p:895-903
    DOI: 10.1016/j.renene.2009.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109004327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singal, S.K. & Varun, & Singh, R.P., 2007. "Rural electrification of a remote island by renewable energy sources," Renewable Energy, Elsevier, vol. 32(15), pages 2491-2501.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djurović, D. & Nemoda, S. & Repić, B. & Dakić, D. & Adzić, M., 2015. "Influence of biomass furnace volume change on flue gases burn out process," Renewable Energy, Elsevier, vol. 76(C), pages 1-6.
    2. Jiakun Chen & Jian Tang & Heng Xia & Tianzheng Wang & Bingyin Gao, 2023. "A Non-Manipulated Variable Analysis of Solid-Phase Combustion in the Furnace of Municipal Solid-Waste Incineration Process Based on the Biorthogonal Numerical-Simulation Experiment," Sustainability, MDPI, vol. 15(19), pages 1-18, September.
    3. Tsiliyannis, Christos A., 2019. "Energy from waste: Plant design and control options for high efficiency and emissions’ compliance under waste variability," Energy, Elsevier, vol. 176(C), pages 34-57.
    4. Miguel Ángel Gómez & Rubén Martín & Joaquín Collazo & Jacobo Porteiro, 2018. "CFD Steady Model Applied to a Biomass Boiler Operating in Air Enrichment Conditions," Energies, MDPI, vol. 11(10), pages 1-18, September.
    5. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    6. Kobyłecki, Rafał & Zarzycki, Robert & Bis, Zbigniew & Panowski, Marcin & Wiński, Mateusz, 2021. "Numerical analysis of the combustion of straw and wood in a stoker boiler with vibrating grate," Energy, Elsevier, vol. 222(C).
    7. Yin, Chungen & Rosendahl, Lasse & Clausen, Sønnik & Hvid, Søren L., 2012. "Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons," Energy, Elsevier, vol. 41(1), pages 473-482.
    8. Wójtowicz-Wróbel, Agnieszka & Kania, Olga & Kocewiak, Katarzyna & Wójtowicz, Ryszard & Dzierwa, Piotr & Trojan, Marcin, 2023. "Thermal-flow calculations for a thermal waste treatment plant and CFD modelling of the spread of gases in the context of urban structures," Energy, Elsevier, vol. 263(PD).
    9. Karim, Md Rezwanul & Bhuiyan, Arafat Ahmed & Sarhan, Abd Alhamid Rafea & Naser, Jamal, 2020. "CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler," Renewable Energy, Elsevier, vol. 146(C), pages 1416-1428.
    10. Woon, Kok Sin & Phuang, Zhen Xin & Taler, Jan & Varbanov, Petar Sabev & Chong, Cheng Tung & Klemeš, Jiří Jaromír & Lee, Chew Tin, 2023. "Recent advances in urban green energy development towards carbon emissions neutrality," Energy, Elsevier, vol. 267(C).
    11. Gu, Tianbao & Yin, Chungen & Ma, Wenchao & Chen, Guanyi, 2019. "Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation," Applied Energy, Elsevier, vol. 247(C), pages 127-139.
    12. Mohammad Hosseini Rahdar & Fuzhan Nasiri, 2020. "Operation Adaptation of Moving Bed Biomass Combustors under Various Waste Fuel Conditions," Energies, MDPI, vol. 13(23), pages 1-18, December.
    13. Abdelhady, Suzan & Borello, Domenico & Shaban, Ahmed, 2018. "Techno-economic assessment of biomass power plant fed with rice straw: Sensitivity and parametric analysis of the performance and the LCOE," Renewable Energy, Elsevier, vol. 115(C), pages 1026-1034.
    14. Su, Xianqiang & Fang, Qingyan & Ma, Lun & Yin, Chungen & Chen, Xinke & Zhang, Cheng & Tan, Peng & Chen, Gang, 2024. "Mathematical modeling of a 30 MW biomass-fired grate boiler: A reliable baseline model taking fuel-bed structure into account," Energy, Elsevier, vol. 288(C).
    15. Trojan, Marcin & Taler, Jan & Smaza, Krzysztof & Wróbel, Wojciech & Dzierwa, Piotr & Taler, Dawid & Kaczmarski, Karol, 2022. "A new software program for monitoring the energy distribution in a thermal waste treatment plant system," Renewable Energy, Elsevier, vol. 184(C), pages 1055-1073.
    16. Tu, Yaojie & Zhou, Anqi & Xu, Mingchen & Yang, Wenming & Siah, Keng Boon & Subbaiah, Prabakaran, 2018. "NOX reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology," Applied Energy, Elsevier, vol. 220(C), pages 962-973.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Μichalena, Evanthie & Hills, Jeremy M., 2012. "Renewable energy issues and implementation of European energy policy: The missing generation?," Energy Policy, Elsevier, vol. 45(C), pages 201-216.
    2. Moritz Wegener & Antonio Isalgué & Anders Malmquist & Andrew Martin, 2019. "3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.
    3. Edwin, M. & Sekhar, S. Joseph, 2015. "Thermal performance of milk chilling units in remote villages working with the combination of biomass, biogas and solar energies," Energy, Elsevier, vol. 91(C), pages 842-851.
    4. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
    5. Purohit, Pallav, 2009. "CO2 emissions mitigation potential of solar home systems under clean development mechanism in India," Energy, Elsevier, vol. 34(8), pages 1014-1023.
    6. Giudici, Federico & Castelletti, Andrea & Garofalo, Elisabetta & Giuliani, Matteo & Maier, Holger R., 2019. "Dynamic, multi-objective optimal design and operation of water-energy systems for small, off-grid islands," Applied Energy, Elsevier, vol. 250(C), pages 605-616.
    7. Hajat, A. & Banks, D. & Aiken, R. & Shackleton, C.M., 2009. "Efficacy of solar power units for small-scale businesses in a remote rural area, South Africa," Renewable Energy, Elsevier, vol. 34(12), pages 2722-2727.
    8. Ma, Qian & Huang, Xiang & Wang, Feng & Xu, Chao & Babaei, Reza & Ahmadian, Hossein, 2022. "Optimal sizing and feasibility analysis of grid-isolated renewable hybrid microgrids: Effects of energy management controllers," Energy, Elsevier, vol. 240(C).
    9. Edwin, M. & Joseph Sekhar, S., 2018. "Techno- Economic evaluation of milk chilling unit retrofitted with hybrid renewable energy system in coastal province," Energy, Elsevier, vol. 151(C), pages 66-78.
    10. Yi, Sul-Ki & Sin, Hwa-Young & Heo, Eunnyeong, 2011. "Selecting sustainable renewable energy source for energy assistance to North Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 554-563, January.
    11. Chmiel, Zbigniew & Bhattacharyya, Subhes C., 2015. "Analysis of off-grid electricity system at Isle of Eigg (Scotland): Lessons for developing countries," Renewable Energy, Elsevier, vol. 81(C), pages 578-588.
    12. Prodromidis, G.N. & Coutelieris, F.A., 2011. "A comparative feasibility study of stand-alone and grid connected RES-based systems in several Greek Islands," Renewable Energy, Elsevier, vol. 36(7), pages 1957-1963.
    13. Sin, Hwa-Young & Heo, Eunnyeong & Yi, Sul-Ki & Kim, Jihyo, 2010. "South Korean citizen's preferences on renewable energy support and cooperation policy for North Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1379-1389, June.
    14. Neves, Diana & Silva, Carlos A. & Connors, Stephen, 2014. "Design and implementation of hybrid renewable energy systems on micro-communities: A review on case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 935-946.
    15. Bénard-Sora, Fiona & Praene, Jean Philippe, 2018. "Sustainable urban planning for a successful energy transition on Reunion Island: From policy intentions to practical achievement," Utilities Policy, Elsevier, vol. 55(C), pages 1-13.
    16. Beatty, Scott J. & Wild, Peter & Buckham, Bradley J., 2010. "Integration of a wave energy converter into the electricity supply of a remote Alaskan island," Renewable Energy, Elsevier, vol. 35(6), pages 1203-1213.
    17. Gupta, A. & Anand, Y. & Tyagi, S.K. & Anand, S., 2016. "Economic and thermodynamic study of different cooling options: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 164-194.
    18. Edwin, M. & Joseph Sekhar, S., 2016. "Thermo-economic assessment of hybrid renewable energy based cooling system for food preservation in hilly terrain," Renewable Energy, Elsevier, vol. 87(P1), pages 493-500.
    19. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    20. Al-Hamamre, Zayed & Saidan, Motasem & Hararah, Muhanned & Rawajfeh, Khaled & Alkhasawneh, Hussam E. & Al-Shannag, Mohammad, 2017. "Wastes and biomass materials as sustainable-renewable energy resources for Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 295-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:5:p:895-903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.