IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2502-d171131.html
   My bibliography  Save this article

A Regional Protection Partition Strategy Considering Communication Constraints and Its Implementation Techniques

Author

Listed:
  • Zhenxing Li

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China)

  • Yang Gong

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China)

  • Lu Wang

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China)

  • Hong Tan

    (School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

  • Prominent Lovet Kativu

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China)

  • Pengfei Wang

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China)

Abstract

Regional protection based on multisource information of a regional power network depends on communication technology. A partition strategy considering communication constraints and implementation techniques must be considered to realize the regional protection of a large power grid. This paper aims at examining the technical requirements of rapid and reliable regional protection, considering the number of hops as the factor affecting communication between secondary substations and primary substations, and combining this with the equalization of substations. Then, a primary substation selection model of regional protection based on an exhaustive method is proposed using the Floyd–Warshall algorithm (an algorithm for finding shortest paths in a weighted graph). The partition model is further established according to the multifactors that affect the communication delay time for regional protection. Focusing on the N-1 channel fault in the preset region after the formation of the subregions, this paper analyzes the circuitous process of information in an interrupt channel and considers the influence of communication delay time to further improve the partition strategy. Finally, this paper puts forward techniques for partition strategy implementation based on graph theory; an example analysis of an actual power network is also given, and the conclusions of multiple partitions of the same power network are compared and analyzed. Besides this, partition suggestions and theoretical guidance considering actual engineering demands are given.

Suggested Citation

  • Zhenxing Li & Yang Gong & Lu Wang & Hong Tan & Prominent Lovet Kativu & Pengfei Wang, 2018. "A Regional Protection Partition Strategy Considering Communication Constraints and Its Implementation Techniques," Energies, MDPI, vol. 11(10), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2502-:d:171131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Short & Fathi Abugchem & Muneeb Dawood, 2016. "Tunneling Horizontal IEC 61850 Traffic through Audio Video Bridging Streams for Flexible Microgrid Control and Protection," Energies, MDPI, vol. 9(3), pages 1-19, March.
    2. Silvia Marzal & Raul González-Medina & Robert Salas-Puente & Emilio Figueres & Gabriel Garcerá, 2017. "A Novel Locality Algorithm and Peer-to-Peer Communication Infrastructure for Optimizing Network Performance in Smart Microgrids," Energies, MDPI, vol. 10(9), pages 1-25, August.
    3. Tongkun Lan & Yinhong Li & Xianzhong Duan & Jia Zhu, 2018. "Simplified Analytic Approach of Pole-to-Pole Faults in MMC-HVDC for AC System Backup Protection Setting Calculation," Energies, MDPI, vol. 11(2), pages 1-16, January.
    4. Lixing Chen & Xueliang Huang & Zhong Chen & Long Jin, 2016. "Study of a New Quick-Charging Strategy for Electric Vehicles in Highway Charging Stations," Energies, MDPI, vol. 9(9), pages 1-20, September.
    5. Lixing Chen & Zhong Chen & Xueliang Huang & Long Jin, 2016. "A Study on Price-Based Charging Strategy for Electric Vehicles on Expressways," Energies, MDPI, vol. 9(5), pages 1-18, May.
    6. Igor Ivanković & Igor Kuzle & Ninoslav Holjevac, 2017. "Wide Area Information-Based Transmission System Centralized Out-of-Step Protection Scheme," Energies, MDPI, vol. 10(5), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixing Chen & Xueliang Huang & Hong Zhang, 2020. "Modeling the Charging Behaviors for Electric Vehicles Based on Ternary Symmetric Kernel Density Estimation," Energies, MDPI, vol. 13(7), pages 1-17, March.
    2. Lixing Chen & Xueliang Huang & Hong Zhang & Yinsheng Luo, 2018. "A Study on Coordinated Optimization of Electric Vehicle Charging and Charging Pile Selection," Energies, MDPI, vol. 11(6), pages 1-16, May.
    3. Su Su & Hao Li & David Wenzhong Gao, 2017. "Optimal Planning of Charging for Plug-In Electric Vehicles Focusing on Users’ Benefits," Energies, MDPI, vol. 10(7), pages 1-15, July.
    4. Wen Wu & Xuezhi Wu & Long Jing & Jingyuan Yin, 2019. "Investigate on a Simplified Multi-Port Interline DC Power Flow Controller and Its Control Strategy," Energies, MDPI, vol. 12(13), pages 1-28, June.
    5. Ivana Semanjski & Sidharta Gautama, 2016. "Forecasting the State of Health of Electric Vehicle Batteries to Evaluate the Viability of Car Sharing Practices," Energies, MDPI, vol. 9(12), pages 1-17, December.
    6. Li, Yanbin & Wang, Jiani & Wang, Weiye & Liu, Chang & Li, Yun, 2023. "Dynamic pricing based electric vehicle charging station location strategy using reinforcement learning," Energy, Elsevier, vol. 281(C).
    7. Yoo, Yoon-Sik & Newaz, S.H. Shah & Shannon, Peter David & Lee, Il-Woo & Choi, Jun Kyun, 2018. "Towards improving throughput and reducing latency: A simplified protocol conversion mechanism in distributed energy resources network," Applied Energy, Elsevier, vol. 213(C), pages 45-55.
    8. Aron Kondoro & Imed Ben Dhaou & Hannu Tenhunen & Nerey Mvungi, 2021. "A Low Latency Secure Communication Architecture for Microgrid Control," Energies, MDPI, vol. 14(19), pages 1-26, October.
    9. Zoran Zbunjak & Igor Kuzle, 2019. "System Integrity Protection Scheme (SIPS) Development and an Optimal Bus-Splitting Scheme Supported by Phasor Measurement Units (PMUs)," Energies, MDPI, vol. 12(17), pages 1-21, September.
    10. Jun Yang & Wanmeng Hao & Lei Chen & Jiejun Chen & Jing Jin & Feng Wang, 2016. "Risk Assessment of Distribution Networks Considering the Charging-Discharging Behaviors of Electric Vehicles," Energies, MDPI, vol. 9(7), pages 1-20, July.
    11. Hasan Can Kılıçkıran & Hüseyin Akdemir & İbrahim Şengör & Bedri Kekezoğlu & Nikolaos G. Paterakis, 2018. "A Non-Standard Characteristic Based Protection Scheme for Distribution Networks," Energies, MDPI, vol. 11(5), pages 1-13, May.
    12. Andrey Pazderin & Inga Zicmane & Mihail Senyuk & Pavel Gubin & Ilya Polyakov & Nikita Mukhlynin & Murodbek Safaraliev & Firuz Kamalov, 2023. "Directions of Application of Phasor Measurement Units for Control and Monitoring of Modern Power Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-43, August.
    13. Bong-Gi Choi & Byeong-Chan Oh & Sungyun Choi & Sung-Yul Kim, 2020. "Selecting Locations of Electric Vehicle Charging Stations Based on the Traffic Load Eliminating Method," Energies, MDPI, vol. 13(7), pages 1-20, April.
    14. Cuiyu Kong & Raka Jovanovic & Islam Safak Bayram & Michael Devetsikiotis, 2017. "A Hierarchical Optimization Model for a Network of Electric Vehicle Charging Stations," Energies, MDPI, vol. 10(5), pages 1-20, May.
    15. Lixing Chen & Xueliang Huang & Zhong Chen & Long Jin, 2016. "Study of a New Quick-Charging Strategy for Electric Vehicles in Highway Charging Stations," Energies, MDPI, vol. 9(9), pages 1-20, September.
    16. Igor Ivanković & Igor Kuzle & Ninoslav Holjevac, 2018. "Algorithm for Fast and Efficient Detection and Reaction to Angle Instability Conditions Using Phasor Measurement Unit Data," Energies, MDPI, vol. 11(3), pages 1-21, March.
    17. Mario Klarić & Igor Kuzle & Ninoslav Holjevac, 2018. "Wind Power Monitoring and Control Based on Synchrophasor Measurement Data Mining," Energies, MDPI, vol. 11(12), pages 1-23, December.
    18. Antonia Golab & Sebastian Zwickl-Bernhard & Hans Auer, 2022. "Minimum-Cost Fast-Charging Infrastructure Planning for Electric Vehicles along the Austrian High-Level Road Network," Energies, MDPI, vol. 15(6), pages 1-26, March.
    19. Tian Wu & Bohan Zeng & Yali He & Xin Tian & Xunmin Ou, 2017. "Sustainable Governance for the Opened Electric Vehicle Charging and Upgraded Facilities Market," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    20. Raheel Muzzammel, 2019. "Traveling Waves-Based Method for Fault Estimation in HVDC Transmission System," Energies, MDPI, vol. 12(19), pages 1-31, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2502-:d:171131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.