IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p204-d65845.html
   My bibliography  Save this article

Tunneling Horizontal IEC 61850 Traffic through Audio Video Bridging Streams for Flexible Microgrid Control and Protection

Author

Listed:
  • Michael Short

    (Technology Futures Institute, Teesside University, Borough Road, Middlesbrough TS1 3BA, UK)

  • Fathi Abugchem

    (Technology Futures Institute, Teesside University, Borough Road, Middlesbrough TS1 3BA, UK)

  • Muneeb Dawood

    (Technology Futures Institute, Teesside University, Borough Road, Middlesbrough TS1 3BA, UK)

Abstract

In this paper, it is argued that some low-level aspects of the usual IEC 61850 mapping to Ethernet are not well suited to microgrids due to their dynamic nature and geographical distribution as compared to substations. It is proposed that the integration of IEEE time-sensitive networking (TSN) concepts (which are currently implemented as audio video bridging (AVB) technologies) within an IEC 61850 / Manufacturing Message Specification framework provides a flexible and reconfigurable platform capable of overcoming such issues. A prototype test platform and bump-in-the-wire device for tunneling horizontal traffic through AVB are described. Experimental results are presented for sending IEC 61850 GOOSE (generic object oriented substation events) and SV (sampled values) messages through AVB tunnels. The obtained results verify that IEC 61850 event and sampled data may be reliably transported within the proposed framework with very low latency, even over a congested network. It is argued that since AVB streams can be flexibly configured from one or more central locations, and bandwidth reserved for their data ensuring predictability of delivery, this gives a solution which seems significantly more reliable than a pure MMS-based solution.

Suggested Citation

  • Michael Short & Fathi Abugchem & Muneeb Dawood, 2016. "Tunneling Horizontal IEC 61850 Traffic through Audio Video Bridging Streams for Flexible Microgrid Control and Protection," Energies, MDPI, vol. 9(3), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:204-:d:65845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca Ardito & Giuseppe Procaccianti & Giuseppe Menga & Maurizio Morisio, 2013. "Smart Grid Technologies in Europe: An Overview," Energies, MDPI, vol. 6(1), pages 1-31, January.
    2. Hao Liang & Weihua Zhuang, 2014. "Stochastic Modeling and Optimization in a Microgrid: A Survey," Energies, MDPI, vol. 7(4), pages 1-24, March.
    3. Wei Deng & Wei Pei & Ziqi Shen & Zhenxing Zhao & Hui Qu, 2015. "Adaptive Micro-Grid Operation Based on IEC 61850," Energies, MDPI, vol. 8(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoo, Yoon-Sik & Newaz, S.H. Shah & Shannon, Peter David & Lee, Il-Woo & Choi, Jun Kyun, 2018. "Towards improving throughput and reducing latency: A simplified protocol conversion mechanism in distributed energy resources network," Applied Energy, Elsevier, vol. 213(C), pages 45-55.
    2. Ángel Silos & Aleix Señís & Ramon Martín De Pozuelo & Agustín Zaballos, 2017. "Using IEC 61850 GOOSE Service for Adaptive ANSI 67/67N Protection in Ring Main Systems with Distributed Energy Resources," Energies, MDPI, vol. 10(11), pages 1-23, October.
    3. Marzal, Silvia & Salas, Robert & González-Medina, Raúl & Garcerá, Gabriel & Figueres, Emilio, 2018. "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3610-3622.
    4. Zhenxing Li & Yang Gong & Lu Wang & Hong Tan & Prominent Lovet Kativu & Pengfei Wang, 2018. "A Regional Protection Partition Strategy Considering Communication Constraints and Its Implementation Techniques," Energies, MDPI, vol. 11(10), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    2. Pedro Roncero-Sànchez & Enrique Acha, 2014. "Design of a Control Scheme for Distribution Static Synchronous Compensators with Power-Quality Improvement Capability," Energies, MDPI, vol. 7(4), pages 1-22, April.
    3. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.
    4. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    5. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    6. Lukas Sigrist & Kristof May & Andrei Morch & Peter Verboven & Pieter Vingerhoets & Luis Rouco, 2016. "On Scalability and Replicability of Smart Grid Projects—A Case Study," Energies, MDPI, vol. 9(3), pages 1-19, March.
    7. Khatereh Ghasvarian Jahromi & Davood Gharavian & Hamid Reza Mahdiani, 2023. "Wind power prediction based on wind speed forecast using hidden Markov model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 101-123, January.
    8. Zhenya Ji & Xueliang Huang & Changfu Xu & Houtao Sun, 2016. "Accelerated Model Predictive Control for Electric Vehicle Integrated Microgrid Energy Management: A Hybrid Robust and Stochastic Approach," Energies, MDPI, vol. 9(11), pages 1-18, November.
    9. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    10. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    11. Nemati, Mohsen & Braun, Martin & Tenbohlen, Stefan, 2018. "Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming," Applied Energy, Elsevier, vol. 210(C), pages 944-963.
    12. Kia, M. & Shafiekhani, M. & Arasteh, H. & Hashemi, S.M. & Shafie-khah, M. & Catalão, J.P.S., 2020. "Short-term operation of microgrids with thermal and electrical loads under different uncertainties using information gap decision theory," Energy, Elsevier, vol. 208(C).
    13. Ali Hadi Abdulwahid & Shaorong Wang, 2016. "A Novel Approach for Microgrid Protection Based upon Combined ANFIS and Hilbert Space-Based Power Setting," Energies, MDPI, vol. 9(12), pages 1-25, December.
    14. Mohamed Els. S. Abdelwareth & Dedet Candra Riawan & Chow Chompoo-inwai, 2023. "Optimum Generated Power for a Hybrid DG/PV/Battery Radial Network Using Meta-Heuristic Algorithms Based DG Allocation," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
    15. Umeozor, Evar Chinedu & Trifkovic, Milana, 2016. "Operational scheduling of microgrids via parametric programming," Applied Energy, Elsevier, vol. 180(C), pages 672-681.
    16. Reza Ahmadi Kordkheili & Seyyed Ali Pourmousavi & Mehdi Savaghebi & Josep M. Guerrero & Mohammad Hashem Nehrir, 2016. "Assessing the Potential of Plug-in Electric Vehicles in Active Distribution Networks," Energies, MDPI, vol. 9(1), pages 1-17, January.
    17. Govind Joshi & Salman Mohagheghi, 2021. "Optimal Operation of Combined Energy and Water Systems for Community Resilience against Natural Disasters," Energies, MDPI, vol. 14(19), pages 1-19, September.
    18. Enrique Personal & Antonio García & Antonio Parejo & Diego Francisco Larios & Félix Biscarri & Carlos León, 2016. "A Comparison of Impedance-Based Fault Location Methods for Power Underground Distribution Systems," Energies, MDPI, vol. 9(12), pages 1-30, December.
    19. Woo-Kyu Chae & Hak-Ju Lee & Jong-Nam Won & Jung-Sung Park & Jae-Eon Kim, 2015. "Design and Field Tests of an Inverted Based Remote MicroGrid on a Korean Island," Energies, MDPI, vol. 8(8), pages 1-18, August.
    20. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:204-:d:65845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.