Optimal Planning of Charging for Plug-In Electric Vehicles Focusing on Users’ Benefits
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
- Md Morshed Alam & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2017. "Dynamic Charging of Electric Vehicle with Negligible Power Transfer Fluctuation," Energies, MDPI, vol. 10(5), pages 1-20, May.
- Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
- Hu, Zechun & Zhan, Kaiqiao & Zhang, Hongcai & Song, Yonghua, 2016. "Pricing mechanisms design for guiding electric vehicle charging to fill load valley," Applied Energy, Elsevier, vol. 178(C), pages 155-163.
- Dongqi Liu & Yaonan Wang & Yongpeng Shen, 2016. "Electric Vehicle Charging and Discharging Coordination on Distribution Network Using Multi-Objective Particle Swarm Optimization and Fuzzy Decision Making," Energies, MDPI, vol. 9(3), pages 1-17, March.
- Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2016. "Electricity costs for an electric vehicle fueling station with Level 3 charging," Applied Energy, Elsevier, vol. 169(C), pages 813-830.
- Jun Yang & Jiejun Chen & Lei Chen & Feng Wang & Peiyuan Xie & Cilin Zeng, 2016. "A Regional Time-of-Use Electricity Price Based Optimal Charging Strategy for Electrical Vehicles," Energies, MDPI, vol. 9(9), pages 1-18, August.
- Muhammad Aziz & Takuya Oda & Takashi Mitani & Yoko Watanabe & Takao Kashiwagi, 2015. "Utilization of Electric Vehicles and Their Used Batteries for Peak-Load Shifting," Energies, MDPI, vol. 8(5), pages 1-19, April.
- Lixing Chen & Xueliang Huang & Zhong Chen & Long Jin, 2016. "Study of a New Quick-Charging Strategy for Electric Vehicles in Highway Charging Stations," Energies, MDPI, vol. 9(9), pages 1-20, September.
- Ouyang, Minggao & Feng, Xuning & Han, Xuebing & Lu, Languang & Li, Zhe & He, Xiangming, 2016. "A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery," Applied Energy, Elsevier, vol. 165(C), pages 48-59.
- Diao, Qinghua & Sun, Wei & Yuan, Xinmei & Li, Lili & Zheng, Zhi, 2016. "Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies," Applied Energy, Elsevier, vol. 178(C), pages 567-578.
- Lixing Chen & Zhong Chen & Xueliang Huang & Long Jin, 2016. "A Study on Price-Based Charging Strategy for Electric Vehicles on Expressways," Energies, MDPI, vol. 9(5), pages 1-18, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jie Song & Xin Pan & Chao Lu & Hanchen Xu, 2017. "A Simulation-Based Optimization Method for Hybrid Frequency Regulation System Configuration," Energies, MDPI, vol. 10(9), pages 1-14, August.
- Yuttana Kongjeen & Krischonme Bhumkittipich, 2018. "Impact of Plug-in Electric Vehicles Integrated into Power Distribution System Based on Voltage-Dependent Power Flow Analysis," Energies, MDPI, vol. 11(6), pages 1-16, June.
- Chunlin Guo & Jingjing Yang & Lin Yang, 2018. "Planning of Electric Vehicle Charging Infrastructure for Urban Areas with Tight Land Supply," Energies, MDPI, vol. 11(9), pages 1-17, September.
- Kakillioglu, Emre Anıl & Yıldız Aktaş, Melike & Fescioglu-Unver, Nilgun, 2022. "Self-controlling resource management model for electric vehicle fast charging stations with priority service," Energy, Elsevier, vol. 239(PC).
- Ouyang, Quan & Fang, Ruyi & Xu, Guotuan & Liu, Yonggang, 2022. "User-involved charging control for lithium-ion batteries with economic cost optimization," Applied Energy, Elsevier, vol. 314(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Yanbin & Wang, Jiani & Wang, Weiye & Liu, Chang & Li, Yun, 2023. "Dynamic pricing based electric vehicle charging station location strategy using reinforcement learning," Energy, Elsevier, vol. 281(C).
- Lixing Chen & Xueliang Huang & Hong Zhang, 2020. "Modeling the Charging Behaviors for Electric Vehicles Based on Ternary Symmetric Kernel Density Estimation," Energies, MDPI, vol. 13(7), pages 1-17, March.
- Lixing Chen & Xueliang Huang & Hong Zhang & Yinsheng Luo, 2018. "A Study on Coordinated Optimization of Electric Vehicle Charging and Charging Pile Selection," Energies, MDPI, vol. 11(6), pages 1-16, May.
- Lixing Chen & Xueliang Huang & Zhong Chen & Long Jin, 2016. "Study of a New Quick-Charging Strategy for Electric Vehicles in Highway Charging Stations," Energies, MDPI, vol. 9(9), pages 1-20, September.
- Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
- Rui Ye & Xueliang Huang & Ziqi Zhang & Zhong Chen & Ran Duan, 2018. "A High-Efficiency Charging Service System for Plug-in Electric Vehicles Considering the Capacity Constraint of the Distribution Network," Energies, MDPI, vol. 11(4), pages 1-20, April.
- José Luis Sampietro & Vicenç Puig & Ramon Costa-Castelló, 2019. "Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries," Energies, MDPI, vol. 12(5), pages 1-27, March.
- Zhenxing Li & Yang Gong & Lu Wang & Hong Tan & Prominent Lovet Kativu & Pengfei Wang, 2018. "A Regional Protection Partition Strategy Considering Communication Constraints and Its Implementation Techniques," Energies, MDPI, vol. 11(10), pages 1-15, September.
- Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
- Yusuf A. Sha’aban & Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie, 2017. "Bi-Directional Coordination of Plug-In Electric Vehicles with Economic Model Predictive Control," Energies, MDPI, vol. 10(10), pages 1-20, September.
- Chen, Jiahui & Wang, Fang & He, Xiaoyi & Liang, Xinyu & Huang, Junling & Zhang, Shaojun & Wu, Ye, 2022. "Emission mitigation potential from coordinated charging schemes for future private electric vehicles," Applied Energy, Elsevier, vol. 308(C).
- Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Haitao Min & Weiyi Sun & Xinyong Li & Dongni Guo & Yuanbin Yu & Tao Zhu & Zhongmin Zhao, 2017. "Research on the Optimal Charging Strategy for Li-Ion Batteries Based on Multi-Objective Optimization," Energies, MDPI, vol. 10(5), pages 1-15, May.
- Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
- K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
- Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
- Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
- Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
- Aziz, Muhammad & Oda, Takuya & Ito, Masakazu, 2016. "Battery-assisted charging system for simultaneous charging of electric vehicles," Energy, Elsevier, vol. 100(C), pages 82-90.
- Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
More about this item
Keywords
electric vehicle; cost model of battery degradation; charging management; optimal scheduling; load control; Monte Carlo;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:952-:d:104123. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.