IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p759-d138322.html
   My bibliography  Save this article

Elgamal Elliptic Curve Based Secure Communication Architecture for Microgrids

Author

Listed:
  • Sarmadullah Khan

    (School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK)

  • Rafiullah Khan

    (School of Electronics, Electrical Engineering and Computer Science (EEECS) , Queen's University Belfast, Belfast BT7 1NN, UK)

Abstract

Microgrids play an important role in today’s power systems as the distributed generation is becoming increasingly common. They can operate in two possible modes: (i) standalone and (ii) grid-connected. The transitional state from standalone to grid-connected mode is very critical and requires the microgrid to be synchronized with the main grid. Thus, secure, reliable and trustworthy control and communication is utmost necessary to prevent out-of-sync connection which could severely damage the microgrid and/or the main grid. Existing solutions consume more resources and take long time to establish a secure connection. The objective of the proposed work is to reduce the connection establishment time by using efficient computational algorithms and save the resources. This paper proposes a secure authentication and key establishment mechanism for ensuring safe operation and control of the microgrids. The proposed approach uses the concept of Elgamal with slight modification. Private key of the sender is used instead of a random number. The proposed modification ensures the non repudiation. This paper also presents a system threat model along with security network architecture and evaluates the performance of proposed algorithm in protecting microgrid communication against man in the middle attacks and replay attacks that could delay the packets to damage the system and need to be detected. Mathematical modeling and simulation results show that the proposed algorithm performs better than the existing protocols in terms of connection establishment, resource consumption and security level.

Suggested Citation

  • Sarmadullah Khan & Rafiullah Khan, 2018. "Elgamal Elliptic Curve Based Secure Communication Architecture for Microgrids," Energies, MDPI, vol. 11(4), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:759-:d:138322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silvia Marzal & Raul González-Medina & Robert Salas-Puente & Emilio Figueres & Gabriel Garcerá, 2017. "A Novel Locality Algorithm and Peer-to-Peer Communication Infrastructure for Optimizing Network Performance in Smart Microgrids," Energies, MDPI, vol. 10(9), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adeel Abro & Zhongliang Deng & Kamran Ali Memon, 2019. "A Lightweight Elliptic-Elgamal-Based Authentication Scheme for Secure Device-to-Device Communication," Future Internet, MDPI, vol. 11(5), pages 1-13, May.
    2. Ismail Aouichak & Sébastien Jacques & Sébastien Bissey & Cédric Reymond & Téo Besson & Jean-Charles Le Bunetel, 2022. "A Bidirectional Grid-Connected DC–AC Converter for Autonomous and Intelligent Electricity Storage in the Residential Sector," Energies, MDPI, vol. 15(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aron Kondoro & Imed Ben Dhaou & Hannu Tenhunen & Nerey Mvungi, 2021. "A Low Latency Secure Communication Architecture for Microgrid Control," Energies, MDPI, vol. 14(19), pages 1-26, October.
    2. Robert Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2017. "Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode," Energies, MDPI, vol. 10(10), pages 1-25, October.
    3. Fazel Mohammadi & Gholam-Abbas Nazri & Mehrdad Saif, 2019. "A Bidirectional Power Charging Control Strategy for Plug-in Hybrid Electric Vehicles," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    4. Robert Salas-Puente & Silvia Marzal & Raul Gonzalez-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization," Energies, MDPI, vol. 11(7), pages 1-31, July.
    5. Zhenxing Li & Yang Gong & Lu Wang & Hong Tan & Prominent Lovet Kativu & Pengfei Wang, 2018. "A Regional Protection Partition Strategy Considering Communication Constraints and Its Implementation Techniques," Energies, MDPI, vol. 11(10), pages 1-15, September.
    6. Olamide Jogunola & Augustine Ikpehai & Kelvin Anoh & Bamidele Adebisi & Mohammad Hammoudeh & Haris Gacanin & Georgina Harris, 2017. "Comparative Analysis of P2P Architectures for Energy Trading and Sharing," Energies, MDPI, vol. 11(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:759-:d:138322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.