A Combined Experimental and Computational Fluid Dynamics Investigation of Particulate Matter Emissions from a Wall-Guided Gasoline Direct Injection Engine
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bonatesta, F. & Altamore, G. & Kalsi, J. & Cary, M., 2016. "Fuel economy analysis of part-load variable camshaft timing strategies in two modern small-capacity spark ignition engines," Applied Energy, Elsevier, vol. 164(C), pages 475-491.
- Huang, Yuhan & Hong, Guang & Huang, Ronghua, 2015. "Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine," Applied Energy, Elsevier, vol. 160(C), pages 244-254.
- Wang, Xiangang & Huang, Zuohua & Zhang, Wu & Kuti, Olawole Abiola & Nishida, Keiya, 2011. "Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray," Applied Energy, Elsevier, vol. 88(5), pages 1620-1628, May.
- Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
- Bermúdez, Vicente & Luján, José Manuel & Climent, Héctor & Campos, Daniel, 2015. "Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions," Applied Energy, Elsevier, vol. 158(C), pages 459-473.
- Bonatesta, F. & Chiappetta, E. & La Rocca, A., 2014. "Part-load particulate matter from a GDI engine and the connection with combustion characteristics," Applied Energy, Elsevier, vol. 124(C), pages 366-376.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maulana G. Nugraha & Harwin Saptoadi & Muslikhin Hidayat & Bengt Andersson & Ronnie Andersson, 2021. "Particulate Matter Reduction in Residual Biomass Combustion," Energies, MDPI, vol. 14(11), pages 1-23, June.
- Doo Sung Choi & Young-Min Kim & Im Hack Lee & Ki-Joon Jeon & Byung Jin Choi & Young-Kwon Park, 2019. "Study on the contribution ratios of particulate matter emissions in differential provinces concerning condensable particulate matter," Energy & Environment, , vol. 30(7), pages 1206-1218, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gao, Zhiming & Curran, Scott J. & Parks, James E. & Smith, David E. & Wagner, Robert M. & Daw, C. Stuart & Edwards, K. Dean & Thomas, John F., 2015. "Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles," Applied Energy, Elsevier, vol. 157(C), pages 762-776.
- Tara Larsson & Senthil Krishnan Mahendar & Anders Christiansen-Erlandsson & Ulf Olofsson, 2021. "The Effect of Pure Oxygenated Biofuels on Efficiency and Emissions in a Gasoline Optimised DISI Engine," Energies, MDPI, vol. 14(13), pages 1-24, June.
- Bermúdez, Vicente & Luján, José Manuel & Climent, Héctor & Campos, Daniel, 2015. "Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions," Applied Energy, Elsevier, vol. 158(C), pages 459-473.
- Costa, M. & Catapano, F. & Sementa, P. & Sorge, U. & Vaglieco, B.M., 2016. "Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine," Applied Energy, Elsevier, vol. 180(C), pages 86-103.
- Wang, Buyu & Mosbach, Sebastian & Schmutzhard, Sebastian & Shuai, Shijin & Huang, Yaqing & Kraft, Markus, 2016. "Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model," Applied Energy, Elsevier, vol. 163(C), pages 154-166.
- Duan, Xiongbo & Liu, Jingping & Tan, Yonghao & Luo, Baojun & Guo, Genmiao & Wu, Zhenkuo & Liu, Weiqiang & Li, Yangyang, 2018. "Influence of single injection and two-stagnation injection strategy on thermodynamic process and performance of a turbocharged direct-injection spark-ignition engine fuelled with ethanol and gasoline ," Applied Energy, Elsevier, vol. 228(C), pages 942-953.
- Li, Tie & Yin, Tao & Wang, Bin, 2017. "Anatomy of the cooled EGR effects on soot emission reduction in boosted spark-ignited direct-injection engines," Applied Energy, Elsevier, vol. 190(C), pages 43-56.
- Zhang, Wenbin & Zhang, Zhou & Ma, Xiao & Awad, Omar I. & Li, Yanfei & Shuai, Shijin & Xu, Hongming, 2020. "Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions," Applied Energy, Elsevier, vol. 262(C).
- Anbari Attar, Mohammadreza & Xu, Hongming, 2016. "Experimental investigation of impacts of engine hardware, operating parameters and combustion performance on particulate emissions in a DISI engine," Applied Energy, Elsevier, vol. 177(C), pages 703-715.
- Qian, Yong & Li, Zilong & Yu, Liang & Wang, Xiaole & Lu, Xingcai, 2019. "Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines," Applied Energy, Elsevier, vol. 238(C), pages 1269-1298.
- Ireneusz Pielecha & Sławomir Wierzbicki & Maciej Sidorowicz & Dariusz Pietras, 2021. "Combustion Thermodynamics of Ethanol, n-Heptane, and n-Butanol in a Rapid Compression Machine with a Dual Direct Injection (DDI) Supply System," Energies, MDPI, vol. 14(9), pages 1-20, May.
- Elena Magaril & Romen Magaril & Hussain H. Al-Kayiem & Elena Skvortsova & Ilya Anisimov & Elena Cristina Rada, 2019. "Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive," Sustainability, MDPI, vol. 11(7), pages 1-10, April.
- Lei Zhang & Tiexiong Su & Yangang Zhang & Fukang Ma & Jinguan Yin & Yaonan Feng, 2017. "Numerical Investigation of the Effects of Split Injection Strategies on Combustion and Emission in an Opposed-Piston, Opposed-Cylinder (OPOC) Two-Stroke Diesel Engine," Energies, MDPI, vol. 10(5), pages 1-17, May.
- Liu, Haoye & Li, Ziyang & Xu, Hongming & Ma, Xiao & Shuai, Shijin, 2020. "Nucleation mode particle evolution in a gasoline direct injection engine with/without a three-way catalyst converter," Applied Energy, Elsevier, vol. 259(C).
- Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
- Wang, Qiang & Tang, Fei & Zhou, Zheng & Liu, Huan & Palacios, Adriana, 2017. "Flame height of axisymmetric gaseous fuel jets restricted by parallel sidewalls: Experiments and theoretical analysis," Applied Energy, Elsevier, vol. 208(C), pages 1519-1526.
- Yu, Wenbin & Zhao, Feiyang & Yang, Wenming, 2020. "Qualitative analysis of particulate matter emission from diesel engine fueled with Jet A-1 under multivariate combustion boundaries by principal component analysis," Applied Energy, Elsevier, vol. 269(C).
- Ping Sun & Ze Liu & Wei Dong & Song Yang, 2019. "Comparative Study on the Effects of Ethanol Proportion on the Particle Numbers Emissions in a Combined Injection Engine," Energies, MDPI, vol. 12(9), pages 1-18, May.
- Mohankumar, S. & Senthilkumar, P., 2017. "Particulate matter formation and its control methodologies for diesel engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1227-1238.
- Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
More about this item
Keywords
gasoline direct injection; particulate matter; particle number density; particle size; mixture preparation; charge homogeneity; uniformity index; computational fluid dynamics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1408-:d:111961. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.