IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v164y2016icp475-491.html
   My bibliography  Save this article

Fuel economy analysis of part-load variable camshaft timing strategies in two modern small-capacity spark ignition engines

Author

Listed:
  • Bonatesta, F.
  • Altamore, G.
  • Kalsi, J.
  • Cary, M.

Abstract

Variable Camshaft Timing strategies have been investigated at part-load operating conditions in two 3-cylinder, 1.0-litre, Spark Ignition engines. The two small-size engines are different variants of the same 4-valve/cylinder, pent-roof design platform. The first engine is naturally aspirated, port fuel injection and features high nominal compression ratio of 12:1. The second one is the turbo-charged, direct injection version, featuring lower compression ratio of 10:1. The aim of the investigation has been to identify optimal camshaft timing strategies which maximise engine thermal efficiency through improvements in brake specific fuel consumption at fixed engine load.

Suggested Citation

  • Bonatesta, F. & Altamore, G. & Kalsi, J. & Cary, M., 2016. "Fuel economy analysis of part-load variable camshaft timing strategies in two modern small-capacity spark ignition engines," Applied Energy, Elsevier, vol. 164(C), pages 475-491.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:475-491
    DOI: 10.1016/j.apenergy.2015.11.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191501507X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.11.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramasamy, D. & Zainal, Z.A. & Kadirgama, K. & Walker-Gitano Briggs, Horizon, 2016. "Effect of dissimilar valve lift on a bi-fuel CNG engine operation," Energy, Elsevier, vol. 112(C), pages 509-519.
    2. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
    3. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    4. Davide D. Sciortino & Fabrizio Bonatesta & Edward Hopkins & Changho Yang & Denise Morrey, 2017. "A Combined Experimental and Computational Fluid Dynamics Investigation of Particulate Matter Emissions from a Wall-Guided Gasoline Direct Injection Engine," Energies, MDPI, vol. 10(9), pages 1-27, September.
    5. Pauras Sawant & Michael Warstler & Saiful Bari, 2018. "Exhaust Tuning of an Internal Combustion Engine by the Combined Effects of Variable Exhaust Pipe Diameter and an Exhaust Valve Timing System," Energies, MDPI, vol. 11(6), pages 1-16, June.
    6. Sahoo, Sridhar & Srivastava, Dhananjay Kumar, 2021. "Effect of compression ratio on engine knock, performance, combustion and emission characteristics of a bi-fuel CNG engine," Energy, Elsevier, vol. 233(C).
    7. Ali, Mohamed Kamal Ahmed & Fuming, Peng & Younus, Hussein A. & Abdelkareem, Mohamed A.A. & Essa, F.A. & Elagouz, Ahmed & Xianjun, Hou, 2018. "Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives," Applied Energy, Elsevier, vol. 211(C), pages 461-478.
    8. Han, Xiaoye & Yu, Shui & Tjong, Jimi & Zheng, Ming, 2020. "Study of an innovative three-pole igniter to improve efficiency and stability of gasoline combustion under charge dilution conditions," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:475-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.