IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i5p1620-1628.html
   My bibliography  Save this article

Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray

Author

Listed:
  • Wang, Xiangang
  • Huang, Zuohua
  • Zhang, Wu
  • Kuti, Olawole Abiola
  • Nishida, Keiya

Abstract

The effects of ultra-high injection pressure (Pinj = 300 MPa) and micro-hole nozzle (d = 0.08 mm) on flame structure and soot formation of impinging diesel spray were studied with a high speed video camera in a constant volume combustion vessel. Two-color pyrometry was used to measure the line-of-sight soot temperature and concentration with two wavelengths of 650 and 800 nm. A flat wall vertical to the injector axis is located 30 mm away from the injector nozzle tip to generate impinging spray flame. Three injection pressures of 100, 200 and 300 MPa and two injector nozzles with diameters of 0.16 and 0.08 mm were used. With the conventional injector nozzle (0.16 mm), ultra-high injection pressure generates appreciably lower soot formation. With the micro-hole nozzle (0.08 mm), impinging spray flame shows much smaller size and lower soot formation at the injection pressure of 100 MPa. The soot formation is too weak to be detected with the micro-hole nozzle at injection pressures of 200 and 300 MPa. With eliminating the impact of injection rate on soot level, both ultra-high injection pressure and micro-hole nozzle have an obvious effect on soot reduction. Soot formation characteristics of impinging spray flame were compared with those of free spray flame using both the conventional and micro-hole nozzles. With the conventional nozzle, flat wall impingement deteriorates soot formation significantly. While soot formation characteristics of free spray flame with the micro-hole nozzle are not altered obviously by flat wall. Liquid length of the 0.16 mm nozzle is longer than the impingement distance and liquid length of the 0.08 mm nozzle is shorter than the impingement distance. Liquid impingement upon the wall is responsible for the deteriorated soot level of impinging flame compared to that of free flame with the conventional nozzle.

Suggested Citation

  • Wang, Xiangang & Huang, Zuohua & Zhang, Wu & Kuti, Olawole Abiola & Nishida, Keiya, 2011. "Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray," Applied Energy, Elsevier, vol. 88(5), pages 1620-1628, May.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1620-1628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00498-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Tiexiong Su & Yangang Zhang & Fukang Ma & Jinguan Yin & Yaonan Feng, 2017. "Numerical Investigation of the Effects of Split Injection Strategies on Combustion and Emission in an Opposed-Piston, Opposed-Cylinder (OPOC) Two-Stroke Diesel Engine," Energies, MDPI, vol. 10(5), pages 1-17, May.
    2. Kang, Wooseok & Choi, Byungchul & Jung, Seunghun & Park, Suhan, 2018. "PM and NOx reduction characteristics of LNT/DPF+SCR/DPF hybrid system," Energy, Elsevier, vol. 143(C), pages 439-447.
    3. Zhong, Wenjun & Huang, Xinghan & Guo, Heng & Mahmoud, Nasreldin M. & Yan, Feibin & He, Zhixia & Wang, Qian & Wang, Jing, 2023. "Spray-evaporation characteristics of n-pentanol/n-dodecane binary fuel at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 219(P2).
    4. Zhang, Kesong & Liang, Zheng & Wang, Jianxin & Wang, Zhiming, 2013. "Diesel diffusion flame simulation using reduced n-heptane oxidation mechanism," Applied Energy, Elsevier, vol. 105(C), pages 223-228.
    5. Mohan, Balaji & Yang, Wenming & Chou, Siaw kiang, 2013. "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 664-676.
    6. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Wang, Qiang & Tang, Fei & Zhou, Zheng & Liu, Huan & Palacios, Adriana, 2017. "Flame height of axisymmetric gaseous fuel jets restricted by parallel sidewalls: Experiments and theoretical analysis," Applied Energy, Elsevier, vol. 208(C), pages 1519-1526.
    8. Yuanzhi Tang & Diming Lou & Chengguan Wang & Piqiang Tan & Zhiyuan Hu & Yunhua Zhang & Liang Fang, 2020. "Joint Study of Impingement Combustion Simulation and Diesel Visualization Experiment of Variable Injection Pressure in Constant Volume Vessel," Energies, MDPI, vol. 13(23), pages 1-19, November.
    9. Li, Xiangrong & Gao, Haobu & Zhao, Luming & Zhang, Zheng & He, Xu & Liu, Fushui, 2016. "Combustion and emission performance of a split injection diesel engine in a double swirl combustion system," Energy, Elsevier, vol. 114(C), pages 1135-1146.
    10. Payri, F. & Olmeda, P. & Martín, J. & García, A., 2011. "A complete 0D thermodynamic predictive model for direct injection diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4632-4641.
    11. Chengguan Wang & Xiaozhi Qi & Tao Wang & Diming Lou & Piqiang Tan & Zhiyuan Hu & Liang Fang & Rong Yang, 2023. "Role of Altitude in Influencing the Spray Combustion Characteristics of a Heavy-Duty Diesel Engine in a Constant Volume Combustion Chamber. Part I: Free Diesel Jet," Energies, MDPI, vol. 16(12), pages 1-25, June.
    12. Tan, Shin Mei & Ng, Hoon Kiat & Gan, Suyin, 2013. "Computational study of crevice soot entrainment in a diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 898-907.
    13. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    14. Davide D. Sciortino & Fabrizio Bonatesta & Edward Hopkins & Changho Yang & Denise Morrey, 2017. "A Combined Experimental and Computational Fluid Dynamics Investigation of Particulate Matter Emissions from a Wall-Guided Gasoline Direct Injection Engine," Energies, MDPI, vol. 10(9), pages 1-27, September.
    15. Seung Hyun Yoon & Seung Chul Han & Chang Sik Lee, 2013. "Effects of High EGR Rate on Dimethyl Ether (DME) Combustion and Pollutant Emission Characteristics in a Direct Injection Diesel Engine," Energies, MDPI, vol. 6(10), pages 1-11, October.
    16. Mohankumar, S. & Senthilkumar, P., 2017. "Particulate matter formation and its control methodologies for diesel engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1227-1238.
    17. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    18. Luo, Minye & Liu, Dong, 2018. "Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions," Energy, Elsevier, vol. 164(C), pages 642-654.
    19. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    21. Du, Wei & Zhang, Qiankun & Zhang, Zheng & Lou, Juejue & Bao, Wenhua, 2018. "Effects of injection pressure on ignition and combustion characteristics of impinging diesel spray," Applied Energy, Elsevier, vol. 226(C), pages 1163-1168.
    22. Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    23. Yuanzhi Tang & Diming Lou & Chengguan Wang & Pi-qiang Tan & Zhiyuan Hu & Yunhua Zhang & Liang Fang, 2020. "Study of Visualization Experiment on the Influence of Injector Nozzle Diameter on Diesel Engine Spray Ignition and Combustion Characteristics," Energies, MDPI, vol. 13(20), pages 1-18, October.
    24. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1620-1628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.