IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p394-d93552.html
   My bibliography  Save this article

Neuro-Fuzzy Wavelet Based Adaptive MPPT Algorithm for Photovoltaic Systems

Author

Listed:
  • Syed Zulqadar Hassan

    (State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

  • Hui Li

    (State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

  • Tariq Kamal

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, Sakarya University, Serdivan/Sakarya 54050, Turkey)

  • Uğur Arifoğlu

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, Sakarya University, Serdivan/Sakarya 54050, Turkey)

  • Sidra Mumtaz

    (Department of Electrical Engineering, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan)

  • Laiq Khan

    (Department of Electrical Engineering, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan)

Abstract

An intelligent control of photovoltaics is necessary to ensure fast response and high efficiency under different weather conditions. This is often arduous to accomplish using traditional linear controllers, as photovoltaic systems are nonlinear and contain several uncertainties. Based on the analysis of the existing literature of Maximum Power Point Tracking (MPPT) techniques, a high performance neuro-fuzzy indirect wavelet-based adaptive MPPT control is developed in this work. The proposed controller combines the reasoning capability of fuzzy logic, the learning capability of neural networks and the localization properties of wavelets. In the proposed system, the Hermite Wavelet-embedded Neural Fuzzy (HWNF)-based gradient estimator is adopted to estimate the gradient term and makes the controller indirect. The performance of the proposed controller is compared with different conventional and intelligent MPPT control techniques. MATLAB results show the superiority over other existing techniques in terms of fast response, power quality and efficiency.

Suggested Citation

  • Syed Zulqadar Hassan & Hui Li & Tariq Kamal & Uğur Arifoğlu & Sidra Mumtaz & Laiq Khan, 2017. "Neuro-Fuzzy Wavelet Based Adaptive MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 10(3), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:394-:d:93552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gupta, A.K. & Ray, S. Saha, 2015. "An investigation with Hermite Wavelets for accurate solution of Fractional Jaulent–Miodek equation associated with energy-dependent Schrödinger potential," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 458-471.
    2. Paula Andrea Ortiz Valencia & Carlos Andres Ramos-Paja, 2015. "Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 8(11), pages 1-25, November.
    3. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    4. Ray, S. Saha & Gupta, A.K., 2015. "A numerical investigation of time-fractional modified Fornberg–Whitham equation for analyzing the behavior of water waves," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 135-148.
    5. Tanaselan Ramalu & Mohd Amran Mohd Radzi & Muhammad Ammirrul Atiqi Mohd Zainuri & Noor Izzri Abdul Wahab & Ribhan Zafira Abdul Rahman, 2016. "A Photovoltaic-Based SEPIC Converter with Dual-Fuzzy Maximum Power Point Tracking for Optimal Buck and Boost Operations," Energies, MDPI, vol. 9(8), pages 1-17, July.
    6. Mukerjee, A.K. & Dasgupta, Nivedita, 2007. "DC power supply used as photovoltaic simulator for testing MPPT algorithms," Renewable Energy, Elsevier, vol. 32(4), pages 587-592.
    7. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    8. Lin, Chia-Hung & Huang, Cong-Hui & Du, Yi-Chun & Chen, Jian-Liung, 2011. "Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method," Applied Energy, Elsevier, vol. 88(12), pages 4840-4847.
    9. Chendi Li & Yuanrui Chen & Dongbao Zhou & Junfeng Liu & Jun Zeng, 2016. "A High-Performance Adaptive Incremental Conductance MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 9(4), pages 1-17, April.
    10. Suliang Ma & Mingxuan Chen & Jianwen Wu & Wenlei Huo & Lian Huang, 2016. "Augmented Nonlinear Controller for Maximum Power-Point Tracking with Artificial Neural Network in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 9(12), pages 1-24, November.
    11. Hong, Chih-Ming & Ou, Ting-Chia & Lu, Kai-Hung, 2013. "Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system," Energy, Elsevier, vol. 50(C), pages 270-279.
    12. Eltawil, Mohamed A. & Zhao, Zhengming, 2013. "MPPT techniques for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 793-813.
    13. Po-Chen Cheng & Bo-Rei Peng & Yi-Hua Liu & Yu-Shan Cheng & Jia-Wei Huang, 2015. "Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique," Energies, MDPI, vol. 8(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julie Viloria-Porto & Carlos Robles-Algarín & Diego Restrepo-Leal, 2018. "A Novel Approach for an MPPT Controller Based on the ADALINE Network Trained with the RTRL Algorithm," Energies, MDPI, vol. 11(12), pages 1-17, December.
    2. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    3. Kamran Zeb & Muhammad Saqib Nazir & Iftikhar Ahmad & Waqar Uddin & Hee-Je Kim, 2021. "Control of Transformerless Inverter-Based Two-Stage Grid-Connected Photovoltaic System Using Adaptive-PI and Adaptive Sliding Mode Controllers," Energies, MDPI, vol. 14(9), pages 1-15, April.
    4. Nima Amjady & Oveis Abedinia, 2017. "Short Term Wind Power Prediction Based on Improved Kriging Interpolation, Empirical Mode Decomposition, and Closed-Loop Forecasting Engine," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    5. Muhammad Awais & Laiq Khan & Saghir Ahmad & Sidra Mumtaz & Rabiah Badar, 2020. "Nonlinear adaptive NeuroFuzzy feedback linearization based MPPT control schemes for photovoltaic system in microgrid," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-36, June.
    6. Sidra Mumtaz & Saima Ali & Saghir Ahmad & Laiq Khan & Syed Zulqadar Hassan & Tariq Kamal, 2017. "Energy Management and Control of Plug-In Hybrid Electric Vehicle Charging Stations in a Grid-Connected Hybrid Power System," Energies, MDPI, vol. 10(11), pages 1-21, November.
    7. Maen Takruri & Maissa Farhat & Oscar Barambones & José Antonio Ramos-Hernanz & Mohammed Jawdat Turkieh & Mohammed Badawi & Hanin AlZoubi & Maswood Abdus Sakur, 2020. "Maximum Power Point Tracking of PV System Based on Machine Learning," Energies, MDPI, vol. 13(3), pages 1-14, February.
    8. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    9. Sidra Mumtaz & Saghir Ahmad & Laiq Khan & Saima Ali & Tariq Kamal & Syed Zulqadar Hassan, 2018. "Adaptive Feedback Linearization Based NeuroFuzzy Maximum Power Point Tracking for a Photovoltaic System," Energies, MDPI, vol. 11(3), pages 1-15, March.
    10. Tariq Kamal & Murat Karabacak & Vedran S. Perić & Syed Zulqadar Hassan & Luis M. Fernández-Ramírez, 2020. "Novel Improved Adaptive Neuro-Fuzzy Control of Inverter and Supervisory Energy Management System of a Microgrid," Energies, MDPI, vol. 13(18), pages 1-22, September.
    11. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    12. Dan Craciunescu & Laurentiu Fara, 2023. "Investigation of the Partial Shading Effect of Photovoltaic Panels and Optimization of Their Performance Based on High-Efficiency FLC Algorithm," Energies, MDPI, vol. 16(3), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    2. Nabipour, M. & Razaz, M. & Seifossadat, S.GH & Mortazavi, S.S., 2017. "A new MPPT scheme based on a novel fuzzy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1147-1169.
    3. Tehzeeb-ul Hassan & Rabeh Abbassi & Houssem Jerbi & Kashif Mehmood & Muhammad Faizan Tahir & Khalid Mehmood Cheema & Rajvikram Madurai Elavarasan & Farman Ali & Irfan Ahmad Khan, 2020. "A Novel Algorithm for MPPT of an Isolated PV System Using Push Pull Converter with Fuzzy Logic Controller," Energies, MDPI, vol. 13(15), pages 1-20, August.
    4. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    5. Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
    6. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    7. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & Gernaat, David E.H.J. & de Boer, Harmen-Sytze & van Vuuren, Detlef P., 2017. "The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach," Energy, Elsevier, vol. 139(C), pages 184-195.
    8. Furqan Asghar & Muhammad Talha & Sung Ho Kim, 2017. "Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid," Energies, MDPI, vol. 10(6), pages 1-20, May.
    9. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
    10. Chettibi, N. & Mellit, A., 2018. "Intelligent control strategy for a grid connected PV/SOFC/BESS energy generation system," Energy, Elsevier, vol. 147(C), pages 239-262.
    11. Sarid, A. & Tzur, M., 2018. "The multi-scale generation and transmission expansion model," Energy, Elsevier, vol. 148(C), pages 977-991.
    12. Marcolino Díaz-Araujo & Aurelio Medina & Rafael Cisneros-Magaña & Amner Ramírez, 2018. "Periodic Steady State Assessment of Microgrids with Photovoltaic Generation Using Limit Cycle Extrapolation and Cubic Splines," Energies, MDPI, vol. 11(8), pages 1-16, August.
    13. Slimane Hadji & Jean-Paul Gaubert & Fateh Krim, 2018. "Real-Time Genetic Algorithms-Based MPPT: Study and Comparison (Theoretical an Experimental) with Conventional Methods," Energies, MDPI, vol. 11(2), pages 1-17, February.
    14. Jaw-Kuen Shiau & Yu-Chen Wei & Min-Yi Lee, 2015. "Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications," Energies, MDPI, vol. 8(5), pages 1-21, April.
    15. Ting-Chia Ou & Kai-Hung Lu & Chiou-Jye Huang, 2017. "Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller)," Energies, MDPI, vol. 10(4), pages 1-16, April.
    16. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    17. Kuei-Hsiang Chao & Meng-Cheng Wu, 2016. "Global Maximum Power Point Tracking (MPPT) of a Photovoltaic Module Array Constructed through Improved Teaching-Learning-Based Optimization," Energies, MDPI, vol. 9(12), pages 1-18, November.
    18. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.
    19. Mohammed Elsayed Lotfy & Tomonobu Senjyu & Mohammed Abdel-Fattah Farahat & Amal Farouq Abdel-Gawad & Hidehito Matayoshi, 2017. "A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique," Energies, MDPI, vol. 10(8), pages 1-25, July.
    20. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:394-:d:93552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.