IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p977-d83438.html
   My bibliography  Save this article

An Improved Adaptive-Torque-Gain MPPT Control for Direct-Driven PMSG Wind Turbines Considering Wind Farm Turbulences

Author

Listed:
  • Xiaolian Zhang

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Can Huang

    (Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA)

  • Sipeng Hao

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Fan Chen

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Jingjing Zhai

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

Abstract

Maximum power point tracking (MPPT) plays an important role in increasing the efficiency of a wind energy conversion system (WECS). In this paper, three conventional MPPT methods are reviewed: power signal feedback (PSF) control, decreased torque gain (DTG) control, and adaptive torque gain (ATG) control, and their potential challenges are investigated. It is found out that the conventional MPPT method ignores the effect of wind turbine inertia and wind speed fluctuations, which lowers WECS efficiency. Accordingly, an improved adaptive torque gain (IATG) method is proposed, which customizes adaptive torque gains and enhances MPPT performances. Specifically, the IATG control considers wind farm turbulences and works out the relationship between the optimal torque gains and the wind speed characteristics, which has not been reported in the literature. The IATG control is promising, especially under the ongoing trend of building wind farms with large-scale wind turbines and at low and medium wind speed sites.

Suggested Citation

  • Xiaolian Zhang & Can Huang & Sipeng Hao & Fan Chen & Jingjing Zhai, 2016. "An Improved Adaptive-Torque-Gain MPPT Control for Direct-Driven PMSG Wind Turbines Considering Wind Farm Turbulences," Energies, MDPI, vol. 9(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:977-:d:83438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/977/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/977/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    2. Zhiqiang Yang & Minghui Yin & Yan Xu & Zhengyang Zhang & Yun Zou & Zhao Yang Dong, 2016. "A Multi-Point Method Considering the Maximum Power Point Tracking Dynamic Process for Aerodynamic Optimization of Variable-Speed Wind Turbine Blades," Energies, MDPI, vol. 9(6), pages 1-16, May.
    3. Xiang Luo & Shuangxia Niu, 2016. "Maximum Power Point Tracking Sensorless Control of an Axial-Flux Permanent Magnet Vernier Wind Power Generator," Energies, MDPI, vol. 9(8), pages 1-17, July.
    4. Ting-Chia Ou & Wei-Fu Su & Xian-Zong Liu & Shyh-Jier Huang & Te-Yu Tai, 2016. "A Modified Bird-Mating Optimization with Hill-Climbing for Connection Decisions of Transformers," Energies, MDPI, vol. 9(9), pages 1-12, August.
    5. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    6. Hong, Chih-Ming & Ou, Ting-Chia & Lu, Kai-Hung, 2013. "Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system," Energy, Elsevier, vol. 50(C), pages 270-279.
    7. Ying Zhu & Ming Cheng & Wei Hua & Wei Wang, 2012. "A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems," Energies, MDPI, vol. 5(5), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    2. Ying Zhu & Ming Cheng & Haixiang Zang, 2017. "Sensorless Control for the EVT-Based New Dual Power Flow Wind Energy Conversion System," Energies, MDPI, vol. 10(7), pages 1-16, June.
    3. Longfu Luo & Xiaofeng Zhang & Dongran Song & Weiyi Tang & Jian Yang & Li Li & Xiaoyu Tian & Wu Wen, 2018. "Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-17, October.
    4. Dejian Yang & Moses Kang & Eduard Muljadi & Wenzhong Gao & Junhee Hong & Jaeseok Choi & Yong Cheol Kang, 2017. "Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization," Energies, MDPI, vol. 10(11), pages 1-14, November.
    5. SungHoon Lim & Seung-Mook Baek & Jung-Wook Park, 2022. "Selection of Inertial and Power Curtailment Control Methods for Wind Power Plants to Enhance Frequency Stability," Energies, MDPI, vol. 15(7), pages 1-14, April.
    6. Dongran Song & Jian Yang & Mei Su & Anfeng Liu & Yao Liu & Young Hoon Joo, 2017. "A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics," Energies, MDPI, vol. 10(5), pages 1-18, May.
    7. Xiaolian Zhang & Baocong Lin & Ke Xu & Yangfei Zhang & Sipeng Hao & Qi Hu, 2023. "An Improved Over-Speed Deloading Control of Wind Power Systems for Primary Frequency Regulation Considering Turbulence Characteristics," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
    2. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    3. Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
    4. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    5. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    6. Sarid, A. & Tzur, M., 2018. "The multi-scale generation and transmission expansion model," Energy, Elsevier, vol. 148(C), pages 977-991.
    7. Mohammed Elsayed Lotfy & Tomonobu Senjyu & Mohammed Abdel-Fattah Farahat & Amal Farouq Abdel-Gawad & Hidehito Matayoshi, 2017. "A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique," Energies, MDPI, vol. 10(8), pages 1-25, July.
    8. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    9. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    10. Hu, Luoke & Liu, Ying & Lohse, Niels & Tang, Renzhong & Lv, Jingxiang & Peng, Chen & Evans, Steve, 2017. "Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed," Energy, Elsevier, vol. 139(C), pages 935-946.
    11. Yuan Hong & Shengbin Wang & Ziyue Huang, 2017. "Efficient Energy Consumption Scheduling: Towards Effective Load Leveling," Energies, MDPI, vol. 10(1), pages 1-27, January.
    12. Jaewan Suh & Sungchul Hwang & Gilsoo Jang, 2017. "Development of a Transmission and Distribution Integrated Monitoring and Analysis System for High Distributed Generation Penetration," Energies, MDPI, vol. 10(9), pages 1-15, August.
    13. Qinliang Tan & Yihong Ding & Yimei Zhang, 2017. "Optimization Model of an Efficient Collaborative Power Dispatching System for Carbon Emissions Trading in China," Energies, MDPI, vol. 10(9), pages 1-19, September.
    14. Changcheng Li & Jinghan He & Pei Zhang & Yin Xu, 2017. "A Novel Sectionalizing Method for Power System Parallel Restoration Based on Minimum Spanning Tree," Energies, MDPI, vol. 10(7), pages 1-21, July.
    15. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    16. Reza Sirjani, 2017. "Optimal Capacitor Placement in Wind Farms by Considering Harmonics Using Discrete Lightning Search Algorithm," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    17. Geng, Zhiqiang & Yang, Xiao & Han, Yongming & Zhu, Qunxiong, 2017. "Energy optimization and analysis modeling based on extreme learning machine integrated index decomposition analysis: Application to complex chemical processes," Energy, Elsevier, vol. 120(C), pages 67-78.
    18. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & Gernaat, David E.H.J. & de Boer, Harmen-Sytze & van Vuuren, Detlef P., 2017. "The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach," Energy, Elsevier, vol. 139(C), pages 184-195.
    19. Furqan Asghar & Muhammad Talha & Sung Ho Kim, 2017. "Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid," Energies, MDPI, vol. 10(6), pages 1-20, May.
    20. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:977-:d:83438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.