IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p105-d87993.html
   My bibliography  Save this article

Efficient Energy Consumption Scheduling: Towards Effective Load Leveling

Author

Listed:
  • Yuan Hong

    (Department of Information Technology Management, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA)

  • Shengbin Wang

    (Department of Marketing Transportation & Supply Chain, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC 27411, USA)

  • Ziyue Huang

    (Department of Information & Supply Chain Management, University of North Carolina at Greensboro, 1400 Spring Garden St., Greensboro, NC 27412, USA)

Abstract

Different agents in the smart grid infrastructure (e.g., households, buildings, communities) consume energy with their own appliances, which may have adjustable usage schedules over a day, a month, a season or even a year. One of the major objectives of the smart grid is to flatten the demand load of numerous agents (viz. consumers), such that the peak load can be avoided and power supply can feed the demand load at anytime on the grid. To this end, we propose two Energy Consumption Scheduling (ECS) problems for the appliances held by different agents at the demand side to effectively facilitate load leveling. Specifically, we mathematically model the ECS problems as Mixed-Integer Programming (MIP) problems using the data collected from different agents (e.g., their appliances’ energy consumption in every time slot and the total number of required in-use time slots, specific preferences of the in-use time slots for their appliances). Furthermore, we propose a novel algorithm to efficiently and effectively solve the ECS problems with large-scale inputs (which are NP-hard). The experimental results demonstrate that our approach is significantly more efficient than standard benchmarks, such as CPLEX, while guaranteeing near-optimal outputs.

Suggested Citation

  • Yuan Hong & Shengbin Wang & Ziyue Huang, 2017. "Efficient Energy Consumption Scheduling: Towards Effective Load Leveling," Energies, MDPI, vol. 10(1), pages 1-27, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:105-:d:87993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maytham S. Ahmed & Azah Mohamed & Raad Z. Homod & Hussain Shareef, 2016. "Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy," Energies, MDPI, vol. 9(9), pages 1-20, September.
    2. Jorge J. Gomez-Sanz & Sandra Garcia-Rodriguez & Nuria Cuartero-Soler & Luis Hernandez-Callejo, 2014. "Reviewing Microgrids from a Multi-Agent Systems Perspective," Energies, MDPI, vol. 7(5), pages 1-28, May.
    3. Ting-Chia Ou & Wei-Fu Su & Xian-Zong Liu & Shyh-Jier Huang & Te-Yu Tai, 2016. "A Modified Bird-Mating Optimization with Hill-Climbing for Connection Decisions of Transformers," Energies, MDPI, vol. 9(9), pages 1-12, August.
    4. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    5. Hee-Jun Cha & Dong-Jun Won & Sang-Hyuk Kim & Il-Yop Chung & Byung-Moon Han, 2015. "Multi-Agent System-Based Microgrid Operation Strategy for Demand Response," Energies, MDPI, vol. 8(12), pages 1-15, December.
    6. Hong, Chih-Ming & Ou, Ting-Chia & Lu, Kai-Hung, 2013. "Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system," Energy, Elsevier, vol. 50(C), pages 270-279.
    7. Lei Lei & Michael Pinedo & Lian Qi & Shengbin Wang & Jian Yang, 2015. "Personnel scheduling and supplies provisioning in emergency relief operations," Annals of Operations Research, Springer, vol. 235(1), pages 487-515, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silveira, Jose Ronaldo & Brandao, Danilo Iglesias & Fernandes, Nicolas T.D. & Uturbey, Wadaed & Cardoso, Braz, 2021. "Multifunctional dispatchable microgrids," Applied Energy, Elsevier, vol. 282(PA).
    2. Nicolas T. D. Fernandes & Anderson Rocha & Danilo Brandao & Braz C. Filho, 2021. "Comparison of Advanced Charge Strategies for Modular Cascaded Battery Chargers," Energies, MDPI, vol. 14(12), pages 1-28, June.
    3. Manish Mohanpurkar & Yusheng Luo & Danny Terlip & Fernando Dias & Kevin Harrison & Joshua Eichman & Rob Hovsapian & Jennifer Kurtz, 2017. "Electrolyzers Enhancing Flexibility in Electric Grids," Energies, MDPI, vol. 10(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    2. Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
    3. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    4. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    5. Sarid, A. & Tzur, M., 2018. "The multi-scale generation and transmission expansion model," Energy, Elsevier, vol. 148(C), pages 977-991.
    6. Mohammed Elsayed Lotfy & Tomonobu Senjyu & Mohammed Abdel-Fattah Farahat & Amal Farouq Abdel-Gawad & Hidehito Matayoshi, 2017. "A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique," Energies, MDPI, vol. 10(8), pages 1-25, July.
    7. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    8. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    9. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
    10. Hu, Luoke & Liu, Ying & Lohse, Niels & Tang, Renzhong & Lv, Jingxiang & Peng, Chen & Evans, Steve, 2017. "Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed," Energy, Elsevier, vol. 139(C), pages 935-946.
    11. Qian Liu & Rui Wang & Yan Zhang & Guohua Wu & Jianmai Shi, 2018. "An Optimal and Distributed Demand Response Strategy for Energy Internet Management," Energies, MDPI, vol. 11(1), pages 1-16, January.
    12. Jaewan Suh & Sungchul Hwang & Gilsoo Jang, 2017. "Development of a Transmission and Distribution Integrated Monitoring and Analysis System for High Distributed Generation Penetration," Energies, MDPI, vol. 10(9), pages 1-15, August.
    13. Qinliang Tan & Yihong Ding & Yimei Zhang, 2017. "Optimization Model of an Efficient Collaborative Power Dispatching System for Carbon Emissions Trading in China," Energies, MDPI, vol. 10(9), pages 1-19, September.
    14. Van-Hai Bui & Akhtar Hussain & Hak-Man Kim, 2017. "Optimal Operation of Microgrids Considering Auto-Configuration Function Using Multiagent System," Energies, MDPI, vol. 10(10), pages 1-16, September.
    15. Changcheng Li & Jinghan He & Pei Zhang & Yin Xu, 2017. "A Novel Sectionalizing Method for Power System Parallel Restoration Based on Minimum Spanning Tree," Energies, MDPI, vol. 10(7), pages 1-21, July.
    16. Xiaolian Zhang & Can Huang & Sipeng Hao & Fan Chen & Jingjing Zhai, 2016. "An Improved Adaptive-Torque-Gain MPPT Control for Direct-Driven PMSG Wind Turbines Considering Wind Farm Turbulences," Energies, MDPI, vol. 9(11), pages 1-16, November.
    17. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    18. Reza Sirjani, 2017. "Optimal Capacitor Placement in Wind Farms by Considering Harmonics Using Discrete Lightning Search Algorithm," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    19. Geng, Zhiqiang & Yang, Xiao & Han, Yongming & Zhu, Qunxiong, 2017. "Energy optimization and analysis modeling based on extreme learning machine integrated index decomposition analysis: Application to complex chemical processes," Energy, Elsevier, vol. 120(C), pages 67-78.
    20. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & Gernaat, David E.H.J. & de Boer, Harmen-Sytze & van Vuuren, Detlef P., 2017. "The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach," Energy, Elsevier, vol. 139(C), pages 184-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:105-:d:87993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.