Application of Augmented Echo State Networks and Genetic Algorithm to Improve Short-Term Wind Speed Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
- Athraa Ali Kadhem & Noor Izzri Abdul Wahab & Ishak Aris & Jasronita Jasni & Ahmed N. Abdalla, 2017. "Advanced Wind Speed Prediction Model Based on a Combination of Weibull Distribution and an Artificial Neural Network," Energies, MDPI, vol. 10(11), pages 1-17, October.
- Shen, Zhiwei & Ritter, Matthias, 2016.
"Forecasting volatility of wind power production,"
Applied Energy, Elsevier, vol. 176(C), pages 295-308.
- Shen, Zhiwei & Ritter, Matthias, 2015. "Forecasting volatility of wind power production," SFB 649 Discussion Papers 2015-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Dehua Zheng & Min Shi & Yifeng Wang & Abinet Tesfaye Eseye & Jianhua Zhang, 2017. "Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy," Energies, MDPI, vol. 10(12), pages 1-23, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.
- Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
- Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
- Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
- Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2020. "Spatial and temporal correlation analysis of wind power between different provinces in China," Energy, Elsevier, vol. 191(C).
- García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
- Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
- Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
- Daniel Ambach & Robert Garthoff, 2016. "Vorhersagen der Windgeschwindigkeit und Windenergie in Deutschland," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(1), pages 15-36, February.
- Fu, Yang & Zheng, Zeyu, 2020. "Volatility modeling and the asymmetric effect for China’s carbon trading pilot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
- Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
- Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
- Croonenbroeck, Carsten & Stadtmann, Georg, 2015. "Minimizing asymmetric loss in medium-term wind power forecasting," Renewable Energy, Elsevier, vol. 81(C), pages 197-208.
- Liu, Liuchen & Zhu, Tong & Pan, Yu & Wang, Hai, 2017. "Multiple energy complementation based on distributed energy systems – Case study of Chongming county, China," Applied Energy, Elsevier, vol. 192(C), pages 329-336.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
More about this item
Keywords
artificial neural networks; forecasting; genetic algorithms; time series analysis; wind energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2635-:d:1094088. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.