IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2014-052.html
   My bibliography  Save this paper

Designing an index for assessing wind energy potential

Author

Listed:
  • Ritter, Matthias
  • Shen, Zhiwei
  • López Cabrera, Brenda
  • Odening, Martin
  • Deckert, Lars

Abstract

To meet the increasing global demand for renewable energy such as wind energy, more and more new wind parks are installed worldwide. Finding a suitable location, however, requires a detailed and often costly analysis of the local wind conditions. Plain average wind speed maps cannot provide a precise forecast of wind power because of the non-linear relationship between wind speed and production. In this paper, we suggest a new approach of assessing the local wind energy potential: Meteorological reanalysis data are applied to obtain long-term low-scale wind speed data at turbine location and hub height; then, with actual high-frequency production data, the relation between wind data and energy production is determined via a five parameter logistic function. The resulting wind energy index allows for a turbine-specific estimation of the expected wind power at an unobserved location. A map of wind power potential for whole Germany exemplifies the approach.

Suggested Citation

  • Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2014. "Designing an index for assessing wind energy potential," SFB 649 Discussion Papers 2014-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2014-052
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/103781/1/797448179.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jung, Sungmoon & Arda Vanli, O. & Kwon, Soon-Duck, 2013. "Wind energy potential assessment considering the uncertainties due to limited data," Applied Energy, Elsevier, vol. 102(C), pages 1492-1503.
    2. Kubik, M.L. & Coker, P.J. & Barlow, J.F. & Hunt, C., 2013. "A study into the accuracy of using meteorological wind data to estimate turbine generation output," Renewable Energy, Elsevier, vol. 51(C), pages 153-158.
    3. Caporin, Massimiliano & Preś, Juliusz, 2012. "Modelling and forecasting wind speed intensity for weather risk management," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3459-3476.
    4. Kotroni, V. & Lagouvardos, K. & Lykoudis, S., 2014. "High-resolution model-based wind atlas for Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 479-489.
    5. Kubik, M.L. & Brayshaw, D.J. & Coker, P.J. & Barlow, J.F., 2013. "Exploring the role of reanalysis data in simulating regional wind generation variability over Northern Ireland," Renewable Energy, Elsevier, vol. 57(C), pages 558-561.
    6. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    7. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    8. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    9. Sanchez, Ismael, 2006. "Short-term prediction of wind energy production," International Journal of Forecasting, Elsevier, vol. 22(1), pages 43-56.
    10. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal," Applied Energy, Elsevier, vol. 117(C), pages 116-126.
    11. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:hum:wpaper:sfb649dp2017-020 is not listed on IDEAS
    2. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    3. Lledó, Ll. & Torralba, V. & Soret, A. & Ramon, J. & Doblas-Reyes, F.J., 2019. "Seasonal forecasts of wind power generation," Renewable Energy, Elsevier, vol. 143(C), pages 91-100.
    4. Engelhorn, Thorsten & Müsgens, Felix, 2018. "How to estimate wind-turbine infeed with incomplete stock data: A general framework with an application to turbine-specific market values in Germany," Energy Economics, Elsevier, vol. 72(C), pages 542-557.
    5. Melzer, Awdesch & Härdle, Wolfgang Karl & López Cabrera, Brenda, 2017. "Pricing Green Financial Products," SFB 649 Discussion Papers 2017-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Ramirez Camargo, Luis & Gruber, Katharina & Nitsch, Felix, 2019. "Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems," Renewable Energy, Elsevier, vol. 133(C), pages 1468-1478.
    7. Ritter, Matthias & Deckert, Lars, 2017. "Site assessment, turbine selection, and local feed-in tariffs through the wind energy index," Applied Energy, Elsevier, vol. 185(P2), pages 1087-1099.
    8. Shen, Zhiwei & Ritter, Matthias, 2016. "Forecasting volatility of wind power production," Applied Energy, Elsevier, vol. 176(C), pages 295-308.
    9. Laudari, R. & Sapkota, B. & Banskota, K., 2018. "Validation of wind resource in 14 locations of Nepal," Renewable Energy, Elsevier, vol. 119(C), pages 777-786.
    10. Alina Wilke & Paul J.J. Welfens, 2020. "Urban Wind Energy Production Potential: New Opportunities," EIIW Discussion paper disbei287, Universitätsbibliothek Wuppertal, University Library.
    11. Tajeddin, Alireza & Fazelpour, Farivar, 2016. "Towards realistic design of wind dams: An innovative approach to enhance wind potential," Applied Energy, Elsevier, vol. 182(C), pages 282-298.
    12. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    13. Matthias Ritter & Simone Pieralli & Martin Odening, 2017. "Neighborhood Effects in Wind Farm Performance: A Regression Approach," Energies, MDPI, vol. 10(3), pages 1-16, March.
    14. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Levelized income loss as a metric of the adaptation of wind and energy storage to variable prices," Applied Energy, Elsevier, vol. 238(C), pages 1179-1191.
    15. Mohamed Elnaggar & Ezzaldeen Edwan & Matthias Ritter, 2017. "Wind Energy Potential of Gaza Using Small Wind Turbines: A Feasibility Study," Energies, MDPI, vol. 10(8), pages 1-13, August.
    16. Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
    17. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Murthy, K.S.R. & Rahi, O.P., 2016. "Preliminary assessment of wind power potential over the coastal region of Bheemunipatnam in northern Andhra Pradesh, India," Renewable Energy, Elsevier, vol. 99(C), pages 1137-1145.
    19. Hain, Martin & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2017. "An Electricity Price Modeling Framework for Renewable-Dominant Markets," Working Paper Series in Production and Energy 23, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    20. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2014-052 is not listed on IDEAS
    2. Ritter, Matthias & Deckert, Lars, 2017. "Site assessment, turbine selection, and local feed-in tariffs through the wind energy index," Applied Energy, Elsevier, vol. 185(P2), pages 1087-1099.
    3. Sharp, Ed & Dodds, Paul & Barrett, Mark & Spataru, Catalina, 2015. "Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information," Renewable Energy, Elsevier, vol. 77(C), pages 527-538.
    4. Gualtieri, Giovanni & Secci, Sauro, 2014. "Extrapolating wind speed time series vs. Weibull distribution to assess wind resource to the turbine hub height: A case study on coastal location in Southern Italy," Renewable Energy, Elsevier, vol. 62(C), pages 164-176.
    5. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    6. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    7. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
    9. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    10. Erik Möllerström & Sean Gregory & Aromal Sugathan, 2021. "Improvement of AEP Predictions with Time for Swedish Wind Farms," Energies, MDPI, vol. 14(12), pages 1-12, June.
    11. Cradden, Lucy C. & McDermott, Frank & Zubiate, Laura & Sweeney, Conor & O'Malley, Mark, 2017. "A 34-year simulation of wind generation potential for Ireland and the impact of large-scale atmospheric pressure patterns," Renewable Energy, Elsevier, vol. 106(C), pages 165-176.
    12. Bilal, Muhammad & Birkelund, Yngve & Homola, Matthew & Virk, Muhammad Shakeel, 2016. "Wind over complex terrain – Microscale modelling with two types of mesoscale winds at Nygårdsfjell," Renewable Energy, Elsevier, vol. 99(C), pages 647-653.
    13. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    14. Xsitaaz T. Chadee & Naresh R. Seegobin & Ricardo M. Clarke, 2017. "Optimizing the Weather Research and Forecasting (WRF) Model for Mapping the Near-Surface Wind Resources over the Southernmost Caribbean Islands of Trinidad and Tobago," Energies, MDPI, vol. 10(7), pages 1-23, July.
    15. Aliashim Albani & Mohd Zamri Ibrahim & Kim Hwang Yong, 2018. "Influence of the ENSO and Monsoonal Season on Long-Term Wind Energy Potential in Malaysia," Energies, MDPI, vol. 11(11), pages 1-18, November.
    16. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2020. "Analysis of United Kingdom offshore wind farm performance using public data: Improving the evidence base for policymaking," Utilities Policy, Elsevier, vol. 62(C).
    17. Andresen, Gorm B. & Søndergaard, Anders A. & Greiner, Martin, 2015. "Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis," Energy, Elsevier, vol. 93(P1), pages 1074-1088.
    18. Candelise, Chiara & Westacott, Paul, 2017. "Can integration of PV within UK electricity network be improved? A GIS based assessment of storage," Energy Policy, Elsevier, vol. 109(C), pages 694-703.
    19. Olauson, Jon & Bergkvist, Mikael, 2015. "Modelling the Swedish wind power production using MERRA reanalysis data," Renewable Energy, Elsevier, vol. 76(C), pages 717-725.
    20. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    21. Frank, Christopher W. & Pospichal, Bernhard & Wahl, Sabrina & Keller, Jan D. & Hense, Andreas & Crewell, Susanne, 2020. "The added value of high resolution regional reanalyses for wind power applications," Renewable Energy, Elsevier, vol. 148(C), pages 1094-1109.

    More about this item

    Keywords

    Wind power; energy production; renewable energy; onshore wind; MERRA;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2014-052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.