IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v7y2022i5p51-d797574.html
   My bibliography  Save this article

A Hybrid Stock Price Prediction Model Based on PRE and Deep Neural Network

Author

Listed:
  • Srivinay

    (Department of Computer Science and Engineering, Presidency University, Bangalore 560065, India
    These authors contributed equally to this work.)

  • B. C. Manujakshi

    (Department of Computer Science and Engineering, Presidency University, Bangalore 560065, India
    These authors contributed equally to this work.)

  • Mohan Govindsa Kabadi

    (Department of Computer Science and Engineering, GITAM School of Technology, GITAM (Deemed to Be University), Bangalore 561203, India
    These authors contributed equally to this work.)

  • Nagaraj Naik

    (Nitte Meenakshi Institute of Technology, Bangalore 560064, India
    These authors contributed equally to this work.)

Abstract

Stock prices are volatile due to different factors that are involved in the stock market, such as geopolitical tension, company earnings, and commodity prices, affecting stock price. Sometimes stock prices react to domestic uncertainty such as reserve bank policy, government policy, inflation, and global market uncertainty. The volatility estimation of stock is one of the challenging tasks for traders. Accurate prediction of stock price helps investors to reduce the risk in portfolio or investment. Stock prices are nonlinear. To deal with nonlinearity in data, we propose a hybrid stock prediction model using the prediction rule ensembles (PRE) technique and deep neural network (DNN). First, stock technical indicators are considered to identify the uptrend in stock prices. We considered moving average technical indicators: moving average 20 days, moving average 50 days, and moving average 200 days. Second, using the PRE technique-computed different rules for stock prediction, we selected the rules with the lowest root mean square error (RMSE) score. Third, the three-layer DNN is considered for stock prediction. We have fine-tuned the hyperparameters of DNN, such as the number of layers, learning rate, neurons, and number of epochs in the model. Fourth, the average results of the PRE and DNN prediction model are combined. The hybrid stock prediction model results are computed using the mean absolute error (MAE) and RMSE metric. The performance of the hybrid stock prediction model is better than the single prediction model, namely DNN and ANN, with a 5% to 7% improvement in RMSE score. The Indian stock price data are considered for the work.

Suggested Citation

  • Srivinay & B. C. Manujakshi & Mohan Govindsa Kabadi & Nagaraj Naik, 2022. "A Hybrid Stock Price Prediction Model Based on PRE and Deep Neural Network," Data, MDPI, vol. 7(5), pages 1-11, April.
  • Handle: RePEc:gam:jdataj:v:7:y:2022:i:5:p:51-:d:797574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/7/5/51/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/7/5/51/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mojtaba Sedighi & Hossein Jahangirnia & Mohsen Gharakhani & Saeed Farahani Fard, 2019. "A Novel Hybrid Model for Stock Price Forecasting Based on Metaheuristics and Support Vector Machine," Data, MDPI, vol. 4(2), pages 1-28, May.
    2. Ao Kong & Hongliang Zhu & Robert Azencott, 2021. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 416-438, April.
    3. Jaideep Singh & Matloob Khushi, 2021. "Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating," Papers 2103.09106, arXiv.org.
    4. S. G. M. Fifield & D. M. Power & D. G. S. Knipe, 2008. "The performance of moving average rules in emerging stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 18(19), pages 1515-1532.
    5. Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
    6. Jun Zhang & Lan Li & Wei Chen, 2021. "Predicting Stock Price Using Two-Stage Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1237-1261, April.
    7. Hu, Yan & Ni, Jian & Wen, Liu, 2020. "A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    8. Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
    9. Zezheng Zhang & Matloob Khushi, 2020. "GA-MSSR: Genetic Algorithm Maximizing Sharpe and Sterling Ratio Method for RoboTrading," Papers 2008.09471, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuen Yik Kang & Chin Poo Lee & Kian Ming Lim, 2022. "Cryptocurrency Price Prediction with Convolutional Neural Network and Stacked Gated Recurrent Unit," Data, MDPI, vol. 7(11), pages 1-13, October.
    2. Rasoul Amirzadeh & Dhananjay Thiruvady & Asef Nazari & Mong Shan Ee, 2023. "Dynamic Bayesian Networks for Predicting Cryptocurrency Price Directions: Uncovering Causal Relationships," Papers 2306.08157, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunze Li & Yanan Xie & Chen Yu & Fangxing Yu & Bo Jiang & Matloob Khushi, 2021. "Feature importance recap and stacking models for forex price prediction," Papers 2107.14092, arXiv.org.
    2. Fateme Shahabi Nejad & Mohammad Mehdi Ebadzadeh, 2023. "Stock market forecasting using DRAGAN and feature matching," Papers 2301.05693, arXiv.org.
    3. Wei Liu & Yoshihisa Suzuki & Shuyi Du, 2024. "Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2035-2068, May.
    4. Yugo Fujimoto & Kei Nakagawa & Kentaro Imajo & Kentaro Minami, 2022. "Uncertainty Aware Trader-Company Method: Interpretable Stock Price Prediction Capturing Uncertainty," Papers 2210.17030, arXiv.org, revised Nov 2022.
    5. Akhilesh Prasad & Arumugam Seetharaman, 2021. "Importance of Machine Learning in Making Investment Decision in Stock Market," Vikalpa: The Journal for Decision Makers, , vol. 46(4), pages 209-222, December.
    6. Jaideep Singh & Matloob Khushi, 2021. "Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating," Papers 2103.09106, arXiv.org.
    7. Dushmanta Kumar Padhi & Neelamadhab Padhy & Akash Kumar Bhoi & Jana Shafi & Muhammad Fazal Ijaz, 2021. "A Fusion Framework for Forecasting Financial Market Direction Using Enhanced Ensemble Models and Technical Indicators," Mathematics, MDPI, vol. 9(21), pages 1-31, October.
    8. Mimansa Rana & Nanxiang Mao & Ming Ao & Xiaohui Wu & Poning Liang & Matloob Khushi, 2021. "Clustering and attention model based for intelligent trading," Papers 2107.06782, arXiv.org, revised Aug 2021.
    9. Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
    10. Sevcan Uzun & Ahmet Sensoy & Duc Khuong Nguyen, 2023. "Jump forecasting in foreign exchange markets: A high‐frequency analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 578-624, April.
    11. Mukul Jaggi & Priyanka Mandal & Shreya Narang & Usman Naseem & Matloob Khushi, 2021. "Text Mining of Stocktwits Data for Predicting Stock Prices," Papers 2103.16388, arXiv.org.
    12. Hongcheng Ding & Xuanze Zhao & Zixiao Jiang & Shamsul Nahar Abdullah & Deshinta Arrova Dewi, 2024. "EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods," Papers 2408.13214, arXiv.org.
    13. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    14. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    15. Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
    16. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    17. Shafiqah Azman & Dharini Pathmanathan & Aerambamoorthy Thavaneswaran, 2022. "Forecasting the Volatility of Cryptocurrencies in the Presence of COVID-19 with the State Space Model and Kalman Filter," Mathematics, MDPI, vol. 10(17), pages 1-15, September.
    18. Benjamin R. Auer, 2021. "Have trend-following signals in commodity futures markets become less reliable in recent years?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(4), pages 533-553, December.
    19. Raphael Paulo Beal Piovezan & Pedro Paulo Andrade Junior & Sérgio Luciano Ávila, 2024. "Machine Learning Method for Return Direction Forecast of Exchange Traded Funds (ETFs) Using Classification and Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1827-1852, May.
    20. Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:7:y:2022:i:5:p:51-:d:797574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.