IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i11d10.1140_epjb_s10051-024-00786-1.html
   My bibliography  Save this article

Synthetic data generation with hybrid quantum-classical models for the financial sector

Author

Listed:
  • Otto M. Pires

    (SENAI-CIMATEC)

  • Mauro Q. Nooblath

    (SENAI-CIMATEC)

  • Yan Alef C. Silva

    (SENAI-CIMATEC)

  • Maria Heloísa F. Silva

    (SENAI-CIMATEC
    Universidade Federal do Oeste da Bahia - Campus Reitor Edgard Santos, UFOB)

  • Lucas Q. Galvão

    (SENAI-CIMATEC)

  • Anton S. Albino

    (SENAI-CIMATEC)

Abstract

Data integrity and privacy are critical concerns in the financial sector. Traditional methods of data collection face challenges due to privacy regulations and time-consuming anonymization processes. In collaboration with Banco BV, we trained a hybrid quantum-classical generative adversarial network (HQGAN), where a quantum circuit serves as the generator and a classical neural network acts as the discriminator, to generate synthetic financial data efficiently and securely. We compared our proposed HQGAN model with a fully classical GAN by evaluating loss convergence and the MSE distance between the synthetic and real data. Although initially promising, our evaluation revealed that HQGAN failed to achieve the necessary accuracy to understand the intricate patterns in financial data. This outcome underscores the current limitations of quantum-inspired methods in handling the complexities of financial datasets. Graphical abstract

Suggested Citation

  • Otto M. Pires & Mauro Q. Nooblath & Yan Alef C. Silva & Maria Heloísa F. Silva & Lucas Q. Galvão & Anton S. Albino, 2024. "Synthetic data generation with hybrid quantum-classical models for the financial sector," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(11), pages 1-11, November.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:11:d:10.1140_epjb_s10051-024-00786-1
    DOI: 10.1140/epjb/s10051-024-00786-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00786-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00786-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takahashi, Shuntaro & Chen, Yu & Tanaka-Ishii, Kumiko, 2019. "Modeling financial time-series with generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    2. Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
    3. Jun Zhang & Lan Li & Wei Chen, 2021. "Predicting Stock Price Using Two-Stage Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1237-1261, April.
    4. Dmitry Efimov & Di Xu & Luyang Kong & Alexey Nefedov & Archana Anandakrishnan, 2020. "Using generative adversarial networks to synthesize artificial financial datasets," Papers 2002.02271, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srivinay & B. C. Manujakshi & Mohan Govindsa Kabadi & Nagaraj Naik, 2022. "A Hybrid Stock Price Prediction Model Based on PRE and Deep Neural Network," Data, MDPI, vol. 7(5), pages 1-11, April.
    2. Fateme Shahabi Nejad & Mohammad Mehdi Ebadzadeh, 2023. "Stock market forecasting using DRAGAN and feature matching," Papers 2301.05693, arXiv.org.
    3. Andrea Coletta & Matteo Prata & Michele Conti & Emanuele Mercanti & Novella Bartolini & Aymeric Moulin & Svitlana Vyetrenko & Tucker Balch, 2021. "Towards Realistic Market Simulations: a Generative Adversarial Networks Approach," Papers 2110.13287, arXiv.org.
    4. Florian Eckerli & Joerg Osterrieder, 2021. "Generative Adversarial Networks in finance: an overview," Papers 2106.06364, arXiv.org, revised Jul 2021.
    5. Hongcheng Ding & Xuanze Zhao & Zixiao Jiang & Shamsul Nahar Abdullah & Deshinta Arrova Dewi, 2024. "EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods," Papers 2408.13214, arXiv.org.
    6. Çelik, Gaffari & Talu, Muhammed Fatih, 2020. "Resizing and cleaning of histopathological images using generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    7. Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
    8. Matteo Rizzato & Julien Wallart & Christophe Geissler & Nicolas Morizet & Noureddine Boumlaik, 2022. "Generative Adversarial Networks Applied to Synthetic Financial Scenarios Generation," Papers 2209.03935, arXiv.org, revised May 2024.
    9. Jos'e-Manuel Pe~na & Fernando Su'arez & Omar Larr'e & Domingo Ram'irez & Arturo Cifuentes, 2023. "A Modified CTGAN-Plus-Features Based Method for Optimal Asset Allocation," Papers 2302.02269, arXiv.org, revised May 2024.
    10. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    11. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    12. Andrea Di Iura & Giulia Terenzi, 2022. "A Bayesian analysis of gain-loss asymmetry," SN Business & Economics, Springer, vol. 2(5), pages 1-23, May.
    13. Bilgi Yilmaz & Christian Laudagé & Ralf Korn & Sascha Desmettre, 2024. "Electricity GANs: Generative Adversarial Networks for Electricity Price Scenario Generation," Commodities, MDPI, vol. 3(3), pages 1-27, July.
    14. Yuze Lu & Hailong Zhang & Qiwen Guo, 2023. "Stock and market index prediction using Informer network," Papers 2305.14382, arXiv.org.
    15. Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
    16. Raphael Paulo Beal Piovezan & Pedro Paulo Andrade Junior & Sérgio Luciano Ávila, 2024. "Machine Learning Method for Return Direction Forecast of Exchange Traded Funds (ETFs) Using Classification and Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1827-1852, May.
    17. Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
    18. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    19. Francesca Biagini & Lukas Gonon & Niklas Walter, 2024. "Universal randomised signatures for generative time series modelling," Papers 2406.10214, arXiv.org, revised Sep 2024.
    20. Weilong Fu & Ali Hirsa & Jorg Osterrieder, 2022. "Simulating financial time series using attention," Papers 2207.00493, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:11:d:10.1140_epjb_s10051-024-00786-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.