IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i11d10.1140_epjb_s10051-024-00786-1.html
   My bibliography  Save this article

Synthetic data generation with hybrid quantum-classical models for the financial sector

Author

Listed:
  • Otto M. Pires

    (SENAI-CIMATEC)

  • Mauro Q. Nooblath

    (SENAI-CIMATEC)

  • Yan Alef C. Silva

    (SENAI-CIMATEC)

  • Maria Heloísa F. Silva

    (SENAI-CIMATEC
    Universidade Federal do Oeste da Bahia - Campus Reitor Edgard Santos, UFOB)

  • Lucas Q. Galvão

    (SENAI-CIMATEC)

  • Anton S. Albino

    (SENAI-CIMATEC)

Abstract

Data integrity and privacy are critical concerns in the financial sector. Traditional methods of data collection face challenges due to privacy regulations and time-consuming anonymization processes. In collaboration with Banco BV, we trained a hybrid quantum-classical generative adversarial network (HQGAN), where a quantum circuit serves as the generator and a classical neural network acts as the discriminator, to generate synthetic financial data efficiently and securely. We compared our proposed HQGAN model with a fully classical GAN by evaluating loss convergence and the MSE distance between the synthetic and real data. Although initially promising, our evaluation revealed that HQGAN failed to achieve the necessary accuracy to understand the intricate patterns in financial data. This outcome underscores the current limitations of quantum-inspired methods in handling the complexities of financial datasets. Graphical abstract

Suggested Citation

  • Otto M. Pires & Mauro Q. Nooblath & Yan Alef C. Silva & Maria Heloísa F. Silva & Lucas Q. Galvão & Anton S. Albino, 2024. "Synthetic data generation with hybrid quantum-classical models for the financial sector," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(11), pages 1-11, November.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:11:d:10.1140_epjb_s10051-024-00786-1
    DOI: 10.1140/epjb/s10051-024-00786-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00786-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00786-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takahashi, Shuntaro & Chen, Yu & Tanaka-Ishii, Kumiko, 2019. "Modeling financial time-series with generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    2. Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
    3. Jun Zhang & Lan Li & Wei Chen, 2021. "Predicting Stock Price Using Two-Stage Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1237-1261, April.
    4. Dmitry Efimov & Di Xu & Luyang Kong & Alexey Nefedov & Archana Anandakrishnan, 2020. "Using generative adversarial networks to synthesize artificial financial datasets," Papers 2002.02271, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srivinay & B. C. Manujakshi & Mohan Govindsa Kabadi & Nagaraj Naik, 2022. "A Hybrid Stock Price Prediction Model Based on PRE and Deep Neural Network," Data, MDPI, vol. 7(5), pages 1-11, April.
    2. Fateme Shahabi Nejad & Mohammad Mehdi Ebadzadeh, 2023. "Stock market forecasting using DRAGAN and feature matching," Papers 2301.05693, arXiv.org.
    3. Andrea Coletta & Matteo Prata & Michele Conti & Emanuele Mercanti & Novella Bartolini & Aymeric Moulin & Svitlana Vyetrenko & Tucker Balch, 2021. "Towards Realistic Market Simulations: a Generative Adversarial Networks Approach," Papers 2110.13287, arXiv.org.
    4. Florian Eckerli & Joerg Osterrieder, 2021. "Generative Adversarial Networks in finance: an overview," Papers 2106.06364, arXiv.org, revised Jul 2021.
    5. Hongcheng Ding & Xuanze Zhao & Zixiao Jiang & Shamsul Nahar Abdullah & Deshinta Arrova Dewi, 2024. "EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods," Papers 2408.13214, arXiv.org.
    6. Çelik, Gaffari & Talu, Muhammed Fatih, 2020. "Resizing and cleaning of histopathological images using generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    7. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    8. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    9. Bilgi Yilmaz & Christian Laudagé & Ralf Korn & Sascha Desmettre, 2024. "Electricity GANs: Generative Adversarial Networks for Electricity Price Scenario Generation," Commodities, MDPI, vol. 3(3), pages 1-27, July.
    10. Raphael Paulo Beal Piovezan & Pedro Paulo Andrade Junior & Sérgio Luciano Ávila, 2024. "Machine Learning Method for Return Direction Forecast of Exchange Traded Funds (ETFs) Using Classification and Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1827-1852, May.
    11. Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
    12. Weilong Fu & Ali Hirsa & Jorg Osterrieder, 2022. "Simulating financial time series using attention," Papers 2207.00493, arXiv.org.
    13. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.
    14. Matej Steinbacher, 2023. "Predicting Stock Price Movement as an Image Classification Problem," Papers 2303.01111, arXiv.org.
    15. Jun Lu & Danny Ding, 2022. "A Hybrid Approach on Conditional GAN for Portfolio Analysis," Papers 2208.07159, arXiv.org.
    16. Tristan Lim, 2024. "Predictive crypto-asset automated market maker architecture for decentralized finance using deep reinforcement learning," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    17. Seyed Mohammad Sina Seyfi & Azin Sharifi & Hamidreza Arian, 2020. "Portfolio Risk Measurement Using a Mixture Simulation Approach," Papers 2011.07994, arXiv.org.
    18. Jun Lu & Shao Yi, 2022. "Autoencoding Conditional GAN for Portfolio Allocation Diversification," Papers 2207.05701, arXiv.org.
    19. Ye-Sheen Lim & Denise Gorse, 2021. "Intra-Day Price Simulation with Generative Adversarial Modelling of the Order Flow," Papers 2109.13905, arXiv.org.
    20. Opeyemi Sheu Alamu & Md Kamrul Siam, 2024. "Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals," Papers 2410.07220, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:11:d:10.1140_epjb_s10051-024-00786-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.