IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.16388.html
   My bibliography  Save this paper

Text Mining of Stocktwits Data for Predicting Stock Prices

Author

Listed:
  • Mukul Jaggi
  • Priyanka Mandal
  • Shreya Narang
  • Usman Naseem
  • Matloob Khushi

Abstract

Stock price prediction can be made more efficient by considering the price fluctuations and understanding the sentiments of people. A limited number of models understand financial jargon or have labelled datasets concerning stock price change. To overcome this challenge, we introduced FinALBERT, an ALBERT based model trained to handle financial domain text classification tasks by labelling Stocktwits text data based on stock price change. We collected Stocktwits data for over ten years for 25 different companies, including the major five FAANG (Facebook, Amazon, Apple, Netflix, Google). These datasets were labelled with three labelling techniques based on stock price changes. Our proposed model FinALBERT is fine-tuned with these labels to achieve optimal results. We experimented with the labelled dataset by training it on traditional machine learning, BERT, and FinBERT models, which helped us understand how these labels behaved with different model architectures. Our labelling method competitive advantage is that it can help analyse the historical data effectively, and the mathematical function can be easily customised to predict stock movement.

Suggested Citation

  • Mukul Jaggi & Priyanka Mandal & Shreya Narang & Usman Naseem & Matloob Khushi, 2021. "Text Mining of Stocktwits Data for Predicting Stock Prices," Papers 2103.16388, arXiv.org.
  • Handle: RePEc:arx:papers:2103.16388
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.16388
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaideep Singh & Matloob Khushi, 2021. "Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating," Papers 2103.09106, arXiv.org.
    2. Zezheng Zhang & Matloob Khushi, 2020. "GA-MSSR: Genetic Algorithm Maximizing Sharpe and Sterling Ratio Method for RoboTrading," Papers 2008.09471, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rick Steinert & Saskia Altmann, 2023. "Linking microblogging sentiments to stock price movement: An application of GPT-4," Papers 2308.16771, arXiv.org.
    2. Cynthia Pagliaro & Dhagash Mehta & Han-Tai Shiao & Shaofei Wang & Luwei Xiong, 2021. "Investor Behavior Modeling by Analyzing Financial Advisor Notes: A Machine Learning Perspective," Papers 2107.05592, arXiv.org.
    3. Yanzhao Zou & Dorien Herremans, 2022. "PreBit -- A multimodal model with Twitter FinBERT embeddings for extreme price movement prediction of Bitcoin," Papers 2206.00648, arXiv.org, revised Oct 2023.
    4. Mimansa Rana & Nanxiang Mao & Ming Ao & Xiaohui Wu & Poning Liang & Matloob Khushi, 2021. "Clustering and attention model based for intelligent trading," Papers 2107.06782, arXiv.org, revised Aug 2021.
    5. Yunze Li & Yanan Xie & Chen Yu & Fangxing Yu & Bo Jiang & Matloob Khushi, 2021. "Feature importance recap and stacking models for forex price prediction," Papers 2107.14092, arXiv.org.
    6. Christopher Wimmer & Navid Rekabsaz, 2023. "Leveraging Vision-Language Models for Granular Market Change Prediction," Papers 2301.10166, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srivinay & B. C. Manujakshi & Mohan Govindsa Kabadi & Nagaraj Naik, 2022. "A Hybrid Stock Price Prediction Model Based on PRE and Deep Neural Network," Data, MDPI, vol. 7(5), pages 1-11, April.
    2. Yunze Li & Yanan Xie & Chen Yu & Fangxing Yu & Bo Jiang & Matloob Khushi, 2021. "Feature importance recap and stacking models for forex price prediction," Papers 2107.14092, arXiv.org.
    3. Htet Htet Htun & Michael Biehl & Nicolai Petkov, 2023. "Survey of feature selection and extraction techniques for stock market prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    4. Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
    5. Akhilesh Prasad & Arumugam Seetharaman, 2021. "Importance of Machine Learning in Making Investment Decision in Stock Market," Vikalpa: The Journal for Decision Makers, , vol. 46(4), pages 209-222, December.
    6. Jaideep Singh & Matloob Khushi, 2021. "Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating," Papers 2103.09106, arXiv.org.
    7. Dushmanta Kumar Padhi & Neelamadhab Padhy & Akash Kumar Bhoi & Jana Shafi & Muhammad Fazal Ijaz, 2021. "A Fusion Framework for Forecasting Financial Market Direction Using Enhanced Ensemble Models and Technical Indicators," Mathematics, MDPI, vol. 9(21), pages 1-31, October.
    8. Mimansa Rana & Nanxiang Mao & Ming Ao & Xiaohui Wu & Poning Liang & Matloob Khushi, 2021. "Clustering and attention model based for intelligent trading," Papers 2107.06782, arXiv.org, revised Aug 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.16388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.