IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2107.06782.html
   My bibliography  Save this paper

Clustering and attention model based for intelligent trading

Author

Listed:
  • Mimansa Rana
  • Nanxiang Mao
  • Ming Ao
  • Xiaohui Wu
  • Poning Liang
  • Matloob Khushi

Abstract

The foreign exchange market has taken an important role in the global financial market. While foreign exchange trading brings high-yield opportunities to investors, it also brings certain risks. Since the establishment of the foreign exchange market in the 20th century, foreign exchange rate forecasting has become a hot issue studied by scholars from all over the world. Due to the complexity and number of factors affecting the foreign exchange market, technical analysis cannot respond to administrative intervention or unexpected events. Our team chose several pairs of foreign currency historical data and derived technical indicators from 2005 to 2021 as the dataset and established different machine learning models for event-driven price prediction for oversold scenario.

Suggested Citation

  • Mimansa Rana & Nanxiang Mao & Ming Ao & Xiaohui Wu & Poning Liang & Matloob Khushi, 2021. "Clustering and attention model based for intelligent trading," Papers 2107.06782, arXiv.org, revised Aug 2021.
  • Handle: RePEc:arx:papers:2107.06782
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2107.06782
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deniz Can Yıldırım & Ismail Hakkı Toroslu & Ugo Fiore, 2021. "Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-36, December.
    2. Mukul Jaggi & Priyanka Mandal & Shreya Narang & Usman Naseem & Matloob Khushi, 2021. "Text Mining of Stocktwits Data for Predicting Stock Prices," Papers 2103.16388, arXiv.org.
    3. Tae Wan Kim & Matloob Khushi, 2020. "Portfolio Optimization with 2D Relative-Attentional Gated Transformer," Papers 2101.03138, arXiv.org.
    4. Jaideep Singh & Matloob Khushi, 2021. "Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating," Papers 2103.09106, arXiv.org.
    5. Gunho Jung & Sun-Yong Choi & Benjamin Miranda Tabak, 2021. "Forecasting Foreign Exchange Volatility Using Deep Learning Autoencoder-LSTM Techniques," Complexity, Hindawi, vol. 2021, pages 1-16, March.
    6. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    7. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    8. Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunze Li & Yanan Xie & Chen Yu & Fangxing Yu & Bo Jiang & Matloob Khushi, 2021. "Feature importance recap and stacking models for forex price prediction," Papers 2107.14092, arXiv.org.
    2. Marc Wildi & Branka Hadji Misheva, 2022. "A Time Series Approach to Explainability for Neural Nets with Applications to Risk-Management and Fraud Detection," Papers 2212.02906, arXiv.org.
    3. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    4. Catalin Stoean & Wiesław Paja & Ruxandra Stoean & Adrian Sandita, 2019. "Deep architectures for long-term stock price prediction with a heuristic-based strategy for trading simulations," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-19, October.
    5. Nestoras Chalkidis & Rahul Savani, 2021. "Trading via Selective Classification," Papers 2110.14914, arXiv.org, revised Oct 2021.
    6. Christopher Wimmer & Navid Rekabsaz, 2023. "Leveraging Vision-Language Models for Granular Market Change Prediction," Papers 2301.10166, arXiv.org.
    7. Hakan Gunduz, 2021. "An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    8. Branka Hadji Misheva & Joerg Osterrieder, 2023. "A Hypothesis on Good Practices for AI-based Systems for Financial Time Series Forecasting: Towards Domain-Driven XAI Methods," Papers 2311.07513, arXiv.org.
    9. Srivinay & B. C. Manujakshi & Mohan Govindsa Kabadi & Nagaraj Naik, 2022. "A Hybrid Stock Price Prediction Model Based on PRE and Deep Neural Network," Data, MDPI, vol. 7(5), pages 1-11, April.
    10. Xiaodong Zhang & Suhui Liu & Xin Zheng, 2021. "Stock Price Movement Prediction Based on a Deep Factorization Machine and the Attention Mechanism," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    11. Jaideep Singh & Matloob Khushi, 2021. "Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating," Papers 2103.09106, arXiv.org.
    12. Dorien Herremans & Kah Wee Low, 2022. "Forecasting Bitcoin volatility spikes from whale transactions and CryptoQuant data using Synthesizer Transformer models," Papers 2211.08281, arXiv.org.
    13. Hongcheng Ding & Xuanze Zhao & Zixiao Jiang & Shamsul Nahar Abdullah & Deshinta Arrova Dewi, 2024. "EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods," Papers 2408.13214, arXiv.org.
    14. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    15. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    16. Jaydip Sen & Sidra Mehtab & Abhishek Dutta & Saikat Mondal, 2022. "Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model," Papers 2203.01326, arXiv.org.
    17. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    18. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    19. Adebayo Oshingbesan & Eniola Ajiboye & Peruth Kamashazi & Timothy Mbaka, 2022. "Model-Free Reinforcement Learning for Asset Allocation," Papers 2209.10458, arXiv.org.
    20. Rian Dolphin & Barry Smyth & Ruihai Dong, 2024. "Contrastive Learning of Asset Embeddings from Financial Time Series," Papers 2407.18645, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.06782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.