Feature importance recap and stacking models for forex price prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Deniz Can Yıldırım & Ismail Hakkı Toroslu & Ugo Fiore, 2021. "Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-36, December.
- Mukul Jaggi & Priyanka Mandal & Shreya Narang & Usman Naseem & Matloob Khushi, 2021. "Text Mining of Stocktwits Data for Predicting Stock Prices," Papers 2103.16388, arXiv.org.
- Tae Wan Kim & Matloob Khushi, 2020. "Portfolio Optimization with 2D Relative-Attentional Gated Transformer," Papers 2101.03138, arXiv.org.
- Adam Kritzer, 2012. "Forex for Beginners," Springer Books, Springer, number 978-1-4302-4051-8, December.
- Jaideep Singh & Matloob Khushi, 2021. "Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating," Papers 2103.09106, arXiv.org.
- Zezheng Zhang & Matloob Khushi, 2020. "GA-MSSR: Genetic Algorithm Maximizing Sharpe and Sterling Ratio Method for RoboTrading," Papers 2008.09471, arXiv.org.
- Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mimansa Rana & Nanxiang Mao & Ming Ao & Xiaohui Wu & Poning Liang & Matloob Khushi, 2021. "Clustering and attention model based for intelligent trading," Papers 2107.06782, arXiv.org, revised Aug 2021.
- Srivinay & B. C. Manujakshi & Mohan Govindsa Kabadi & Nagaraj Naik, 2022. "A Hybrid Stock Price Prediction Model Based on PRE and Deep Neural Network," Data, MDPI, vol. 7(5), pages 1-11, April.
- Jaideep Singh & Matloob Khushi, 2021. "Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating," Papers 2103.09106, arXiv.org.
- Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
- Christopher Wimmer & Navid Rekabsaz, 2023. "Leveraging Vision-Language Models for Granular Market Change Prediction," Papers 2301.10166, arXiv.org.
- Mukul Jaggi & Priyanka Mandal & Shreya Narang & Usman Naseem & Matloob Khushi, 2021. "Text Mining of Stocktwits Data for Predicting Stock Prices," Papers 2103.16388, arXiv.org.
- Branka Hadji Misheva & Joerg Osterrieder, 2023. "A Hypothesis on Good Practices for AI-based Systems for Financial Time Series Forecasting: Towards Domain-Driven XAI Methods," Papers 2311.07513, arXiv.org.
- Marc Wildi & Branka Hadji Misheva, 2022. "A Time Series Approach to Explainability for Neural Nets with Applications to Risk-Management and Fraud Detection," Papers 2212.02906, arXiv.org.
- Hongcheng Ding & Xuanze Zhao & Zixiao Jiang & Shamsul Nahar Abdullah & Deshinta Arrova Dewi, 2024. "EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods," Papers 2408.13214, arXiv.org.
- Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
- Htet Htet Htun & Michael Biehl & Nicolai Petkov, 2023. "Survey of feature selection and extraction techniques for stock market prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
- Yuze Lu & Hailong Zhang & Qiwen Guo, 2023. "Stock and market index prediction using Informer network," Papers 2305.14382, arXiv.org.
- Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
- Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
- Shima Nabiee & Nader Bagherzadeh, 2023. "Stock Trend Prediction: A Semantic Segmentation Approach," Papers 2303.09323, arXiv.org.
- Gil Cohen, 2024. "Polynomial Moving Regression Band Stocks Trading System," Risks, MDPI, vol. 12(10), pages 1-15, October.
- Matej Steinbacher, 2023. "Predicting Stock Price Movement as an Image Classification Problem," Papers 2303.01111, arXiv.org.
- Abdellilah Nafia & Abdellah Yousfi & Abdellah Echaoui, 2023. "Equity-Market-Neutral Strategy Portfolio Construction Using LSTM-Based Stock Prediction and Selection: An Application to S&P500 Consumer Staples Stocks," IJFS, MDPI, vol. 11(2), pages 1-48, March.
- Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
- Kassiani Papasotiriou & Srijan Sood & Shayleen Reynolds & Tucker Balch, 2024. "AI in Investment Analysis: LLMs for Equity Stock Ratings," Papers 2411.00856, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-08-16 (Big Data)
- NEP-ISF-2021-08-16 (Islamic Finance)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.14092. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.