IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.08157.html
   My bibliography  Save this paper

Dynamic Bayesian Networks for Predicting Cryptocurrency Price Directions: Uncovering Causal Relationships

Author

Listed:
  • Rasoul Amirzadeh
  • Dhananjay Thiruvady
  • Asef Nazari
  • Mong Shan Ee

Abstract

Cryptocurrencies have gained popularity across various sectors, especially in finance and investment. Despite their growing popularity, cryptocurrencies can be a high-risk investment due to their price volatility. The inherent volatility in cryptocurrency prices, coupled with the effects of external global economic factors, makes predicting their price movements challenging. To address this challenge, we propose a dynamic Bayesian network (DBN)-based approach to uncover potential causal relationships among various features including social media data, traditional financial market factors, and technical indicators. Six popular cryptocurrencies, Bitcoin, Binance Coin, Ethereum, Litecoin, Ripple, and Tether are studied in this work. The proposed model's performance is compared to five baseline models of auto-regressive integrated moving average, support vector regression, long short-term memory, random forests, and support vector machines. The results show that while DBN performance varies across cryptocurrencies, with some cryptocurrencies exhibiting higher predictive accuracy than others, the DBN significantly outperforms the baseline models.

Suggested Citation

  • Rasoul Amirzadeh & Dhananjay Thiruvady & Asef Nazari & Mong Shan Ee, 2023. "Dynamic Bayesian Networks for Predicting Cryptocurrency Price Directions: Uncovering Causal Relationships," Papers 2306.08157, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2306.08157
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.08157
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Xianguo & Liu, Huitao & Zhang, Limao & Skibniewski, Miroslaw J. & Deng, Qianli & Teng, Jiaying, 2015. "A dynamic Bayesian network based approach to safety decision support in tunnel construction," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 157-168.
    2. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    3. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    4. Srivinay & B. C. Manujakshi & Mohan Govindsa Kabadi & Nagaraj Naik, 2022. "A Hybrid Stock Price Prediction Model Based on PRE and Deep Neural Network," Data, MDPI, vol. 7(5), pages 1-11, April.
    5. Haizhen Wang & Ratthachat Chatpatanasiri & Pairote Sattayatham, 2017. "Stock Trading Using PE ratio: A Dynamic Bayesian Network Modeling on Behavioral Finance and Fundamental Investment," Papers 1706.02985, arXiv.org.
    6. Obryan Poyser, 2019. "Exploring the dynamics of Bitcoin’s price: a Bayesian structural time series approach," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 9(1), pages 29-60, March.
    7. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    8. Yanzhao Zou & Dorien Herremans, 2022. "PreBit -- A multimodal model with Twitter FinBERT embeddings for extreme price movement prediction of Bitcoin," Papers 2206.00648, arXiv.org, revised Oct 2023.
    9. Charfeddine, Lanouar & Benlagha, Noureddine & Maouchi, Youcef, 2020. "Investigating the dynamic relationship between cryptocurrencies and conventional assets: Implications for financial investors," Economic Modelling, Elsevier, vol. 85(C), pages 198-217.
    10. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    11. Zi Ye & Yinxu Wu & Hui Chen & Yi Pan & Qingshan Jiang, 2022. "A Stacking Ensemble Deep Learning Model for Bitcoin Price Prediction Using Twitter Comments on Bitcoin," Mathematics, MDPI, vol. 10(8), pages 1-21, April.
    12. Esfandiar Maasoumi & Xi Wu, 2021. "Contrasting Cryptocurrencies with Other Assets: Full Distributions and the COVID Impact," JRFM, MDPI, vol. 14(9), pages 1-15, September.
    13. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    14. Gajardo, Gabriel & Kristjanpoller, Werner D. & Minutolo, Marcel, 2018. "Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 195-205.
    15. Qifeng Qiao & Peter A. Beling, 2016. "Decision analytics and machine learning in economic and financial systems," Environment Systems and Decisions, Springer, vol. 36(2), pages 109-113, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasoul Amirzadeh & Asef Nazari & Dhananjay Thiruvady & Mong Shan Ee, 2023. "Modelling Determinants of Cryptocurrency Prices: A Bayesian Network Approach," Papers 2303.16148, arXiv.org.
    2. Ahmed, Walid M.A., 2021. "How do Islamic equity markets respond to good and bad volatility of cryptocurrencies? The case of Bitcoin," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    3. Banerjee, Ameet Kumar & Akhtaruzzaman, Md & Dionisio, Andreia & Almeida, Dora & Sensoy, Ahmet, 2022. "Nonlinear nexus between cryptocurrency returns and COVID-19 news sentiment," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
    4. Mario I. Contreras-Valdez & José Antonio Núñez & Guillermo Benavides Perales, 2022. "Bitcoin in Portfolio Selection: A Multivariate Distribution Approach," SAGE Open, , vol. 12(2), pages 21582440221, May.
    5. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    6. Ahmed, Walid M.A., 2021. "Stock market reactions to upside and downside volatility of Bitcoin: A quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    7. Wang, Xuetong & Fang, Fang & Ma, Shiqun & Xiang, Lijin & Xiao, Zumian, 2024. "Dynamic volatility spillover among cryptocurrencies and energy markets: An empirical analysis based on a multilevel complex network," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    8. Hu, Yitong & Shen, Dehua & Urquhart, Andrew, 2023. "Attention allocation and cryptocurrency return co-movement: Evidence from the stock market," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 1173-1185.
    9. Abdulnasser Hatemi-J & Mohamed A. Hajji & Elie Bouri & Rangan Gupta, 2022. "The Benefits of Diversification Between Bitcoin, Bonds, Equities and the US Dollar: A Matter of Portfolio Construction," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 39(04), pages 1-11, August.
    10. Kumar, Ashish & Iqbal, Najaf & Mitra, Subrata Kumar & Kristoufek, Ladislav & Bouri, Elie, 2022. "Connectedness among major cryptocurrencies in standard times and during the COVID-19 outbreak," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    11. Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
    12. Achraf Ghorbel & Ahmed Jeribi, 2021. "Investigating the relationship between volatilities of cryptocurrencies and other financial assets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 817-843, December.
    13. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "Volatility spillovers and other dynamics between cryptocurrencies and the energy and bond markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 1-13.
    14. Achraf Ghorbel & Wajdi Frikha & Yasmine Snene Manzli, 2022. "Testing for asymmetric non-linear short- and long-run relationships between crypto-currencies and stock markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 387-425, September.
    15. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    16. Bampinas, Georgios & Panagiotidis, Theodore, 2024. "How would the war and the pandemic affect the stock and cryptocurrency cross-market linkages?," Research in International Business and Finance, Elsevier, vol. 70(PA).
    17. Cao, Guangxi & Ling, Meijun, 2022. "Asymmetry and conduction direction of the interdependent structure between cryptocurrency and US dollar, renminbi, and gold markets," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    18. Ahmed Jeribi & Mohamed Fakhfekh, 2021. "Portfolio management and dependence structure between cryptocurrencies and traditional assets: evidence from FIEGARCH-EVT-Copula," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 224-239, May.
    19. Mensi, Walid & Sensoy, Ahmet & Aslan, Aylin & Kang, Sang Hoon, 2019. "High-frequency asymmetric volatility connectedness between Bitcoin and major precious metals markets," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    20. Charfeddine, Lanouar & Benlagha, Noureddine & Khediri, Karim Ben, 2022. "An intra-cryptocurrency analysis of volatility connectedness and its determinants: Evidence from mining coins, non-mining coins and tokens," Research in International Business and Finance, Elsevier, vol. 62(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.08157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.