IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v13y2022i1p24-d829535.html
   My bibliography  Save this article

Planetary Health and Traditional Medicine: A Potential Synergistic Approach to Tackle Antimicrobial Resistance

Author

Listed:
  • Iyiola Olatunji Oladunjoye

    (Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria)

  • Yusuf Amuda Tajudeen

    (Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria)

  • Habeebullah Jayeola Oladipo

    (Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria)

  • Mona Said El-Sherbini

    (Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt)

Abstract

Antimicrobials are compounds that impede the activities of bacteria, viruses, parasites, or fungi. Continuous antimicrobial overuse, misuse, and improper use for human, animal, and agricultural purposes are raising concerns about antibiotic residue pollution in the environment, and antibiotic resistance genes (ARGs). Because antimicrobial-resistant diseases are linked to human–-microbial ecosystems, environmental pollution from antibiotic residue and ARGs alters the makeup and diversity of human gut microbiota, putting resistance under selection pressure. This perspective proposes that antibiotic-induced microbiome depletion is linked to environmental quality and has repercussions for human health via the gut microbiome’s sensitive ecosystem. This has stimulated new global efforts and multidisciplinary, integrative approaches to addressing Antimicrobial Resistance (AMR) awareness in communities. Several academic papers published in recent years have shown that medicinal plant extracts are effective against diseases on WHO’s pathogen priority lists (PPL), such as the ESKAPE pathogens ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species). Traditional medicine, with its knowledge of medicinal plants, promises to be a valuable source of next-generation powerful antimicrobials. Examples include the recent discovery of Artemisinin, a highly active antimalarial drug derived from Artemisia annua , and the discovery of Taxol, an active chemotherapeutic drug derived from the bark of the Pacific yew, Taxus brevifolia . The connections between small and large ecosystems’ vitality, biodiversity protection, and human health have been acknowledged by Planetary Health principles. To address these intertwined concerns, a Planetary Health and Traditional Medicine approach can be adopted, and antimicrobial resistance can be addressed by expanding the screening of medicinal plants for bioactive compounds.

Suggested Citation

  • Iyiola Olatunji Oladunjoye & Yusuf Amuda Tajudeen & Habeebullah Jayeola Oladipo & Mona Said El-Sherbini, 2022. "Planetary Health and Traditional Medicine: A Potential Synergistic Approach to Tackle Antimicrobial Resistance," Challenges, MDPI, vol. 13(1), pages 1-10, June.
  • Handle: RePEc:gam:jchals:v:13:y:2022:i:1:p:24-:d:829535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/13/1/24/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/13/1/24/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Les Dethlefsen & Sue Huse & Mitchell L Sogin & David A Relman, 2008. "The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing," PLOS Biology, Public Library of Science, vol. 6(11), pages 1-18, November.
    2. Vanessa M. D’Costa & Christine E. King & Lindsay Kalan & Mariya Morar & Wilson W. L. Sung & Carsten Schwarz & Duane Froese & Grant Zazula & Fabrice Calmels & Regis Debruyne & G. Brian Golding & Hendri, 2011. "Antibiotic resistance is ancient," Nature, Nature, vol. 477(7365), pages 457-461, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick D Schloss, 2009. "A High-Throughput DNA Sequence Aligner for Microbial Ecology Studies," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-9, December.
    2. Shahnawaz Hassan & Zulaykha Khurshid & Sabreena & Bikram Singh Bali & Bashir Ah Ganai & R. Z. Sayyed & Peter Poczai & Muzafar Zaman, 2022. "A Critical Assessment of the Congruency between Environmental DNA and Palaeoecology for the Biodiversity Monitoring and Palaeoenvironmental Reconstruction," IJERPH, MDPI, vol. 19(15), pages 1-25, August.
    3. Laura C. Scott & Nicholas Lee & Tiong Gim Aw, 2020. "Antibiotic Resistance in Minimally Human-Impacted Environments," IJERPH, MDPI, vol. 17(11), pages 1-12, June.
    4. Chang-Ro Lee & Ill Hwan Cho & Byeong Chul Jeong & Sang Hee Lee, 2013. "Strategies to Minimize Antibiotic Resistance," IJERPH, MDPI, vol. 10(9), pages 1-32, September.
    5. Merja Ahonen & Anne Kahru & Angela Ivask & Kaja Kasemets & Siiri Kõljalg & Paride Mantecca & Ivana Vinković Vrček & Minna M. Keinänen-Toivola & Francy Crijns, 2017. "Proactive Approach for Safe Use of Antimicrobial Coatings in Healthcare Settings: Opinion of the COST Action Network AMiCI," IJERPH, MDPI, vol. 14(4), pages 1-23, March.
    6. Na Li & Hongna Li & Changxiong Zhu & Chong Liu & Guofeng Su & Jianguo Chen, 2022. "Controlling AMR in the Pig Industry: Is It Enough to Restrict Heavy Metals?," IJERPH, MDPI, vol. 19(18), pages 1-12, September.
    7. Asit Kumar Chakraborty, 2017. "Mechanisms of AMR: Mdr Genes and Antibiotics Decoys Retard the New Antibiotic Discovery against Superbugs," Novel Approaches in Drug Designing & Development, Juniper Publishers Inc., vol. 2(1), pages 1-5, June.
    8. Ming Ni & Antoine L Decrulle & Fanette Fontaine & Alice Demarez & Francois Taddei & Ariel B Lindner, 2012. "Pre-Disposition and Epigenetics Govern Variation in Bacterial Survival upon Stress," PLOS Genetics, Public Library of Science, vol. 8(12), pages 1-11, December.
    9. Na Li & Chong Liu & Zhiguo Zhang & Hongna Li & Tingting Song & Ting Liang & Binxu Li & Luyao Li & Shuo Feng & Qianqian Su & Jing Ye & Changxiong Zhu, 2019. "Research and Technological Advances Regarding the Study of the Spread of Antimicrobial Resistance Genes and Antimicrobial-Resistant Bacteria Related to Animal Husbandry," IJERPH, MDPI, vol. 16(24), pages 1-19, December.
    10. Rita Batista & Margarida Saraiva & Teresa Lopes & Leonor Silveira & Anabela Coelho & Rosália Furtado & Rita Castro & Cristina Belo Correia & David Rodrigues & Pedro Henriques & Sara Lóio & Vanessa Soe, 2022. "Genotypic and Phenotypic Characterization of Pathogenic Escherichia coli , Salmonella spp., and Campylobacter spp., in Free-Living Birds in Mainland Portugal," IJERPH, MDPI, vol. 20(1), pages 1-14, December.
    11. Oliver Aasmets & Kertu Liis Krigul & Kreete Lüll & Andres Metspalu & Elin Org, 2022. "Gut metagenome associations with extensive digital health data in a volunteer-based Estonian microbiome cohort," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Eman M Fouda, 2017. "Airway Microbiota and Allergic Diseases: Clinical Implications," International Journal of Pulmonary & Respiratory Sciences, Juniper Publishers Inc., vol. 1(5), pages 1-5, May.
    13. Łukasz Jałowiecki & Jakub Hubeny & Monika Harnisz & Grażyna Płaza, 2021. "Seasonal and Technological Shifts of the WHO Priority Multi-Resistant Pathogens in Municipal Wastewater Treatment Plant and Its Receiving Surface Water: A Case Study," IJERPH, MDPI, vol. 19(1), pages 1-13, December.
    14. Stacy Slobodiuk & Caitlin Niven & Greer Arthur & Siddhartha Thakur & Ayse Ercumen, 2021. "Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review," IJERPH, MDPI, vol. 18(21), pages 1-19, October.
    15. Lena Takayasu & Wataru Suda & Eiichiro Watanabe & Shinji Fukuda & Kageyasu Takanashi & Hiroshi Ohno & Misako Takayasu & Hideki Takayasu & Masahira Hattori, 2017. "A 3-dimensional mathematical model of microbial proliferation that generates the characteristic cumulative relative abundance distributions in gut microbiomes," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-20, August.
    16. Milva Pepi & Silvano Focardi, 2021. "Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area," IJERPH, MDPI, vol. 18(11), pages 1-31, May.
    17. Eman M Fouda, 2017. "Airway Microbiota and Allergic Diseases: Clinical Implications," International Journal of Pulmonary & Respiratory Sciences, Juniper Publishers Inc., vol. 1(5), pages 119-124, May.
    18. Bo-Young Hong & Michel V Furtado Araujo & Linda D Strausbaugh & Evimaria Terzi & Effie Ioannidou & Patricia I Diaz, 2015. "Microbiome Profiles in Periodontitis in Relation to Host and Disease Characteristics," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-14, May.
    19. Nolonwabo Nontongana & Timothy Sibanda & Elvis Ngwenya & Anthony I. Okoh, 2014. "Prevalence and Antibiogram Profiling of Escherichia coli Pathotypes Isolated from the Kat River and the Fort Beaufort Abstraction Water," IJERPH, MDPI, vol. 11(8), pages 1-15, August.
    20. Sharon P. Nappier & Krista Liguori & Audrey M. Ichida & Jill R. Stewart & Kaedra R. Jones, 2020. "Antibiotic Resistance in Recreational Waters: State of the Science," IJERPH, MDPI, vol. 17(21), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:13:y:2022:i:1:p:24-:d:829535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.