IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v10y2013i9p4274-4305d28768.html
   My bibliography  Save this article

Strategies to Minimize Antibiotic Resistance

Author

Listed:
  • Chang-Ro Lee

    (Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Korea
    These authors contributed equally to this work.)

  • Ill Hwan Cho

    (National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Korea
    Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada)

  • Byeong Chul Jeong

    (Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Korea)

  • Sang Hee Lee

    (National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Korea
    These authors contributed equally to this work.)

Abstract

Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

Suggested Citation

  • Chang-Ro Lee & Ill Hwan Cho & Byeong Chul Jeong & Sang Hee Lee, 2013. "Strategies to Minimize Antibiotic Resistance," IJERPH, MDPI, vol. 10(9), pages 1-32, September.
  • Handle: RePEc:gam:jijerp:v:10:y:2013:i:9:p:4274-4305:d:28768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/10/9/4274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/10/9/4274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Les Dethlefsen & Sue Huse & Mitchell L Sogin & David A Relman, 2008. "The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing," PLOS Biology, Public Library of Science, vol. 6(11), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Stefan Zgliczyński & Jarosław Bartosiński & Olga Maria Rostkowska, 2022. "Knowledge and Practice of Antibiotic Management and Prudent Prescribing among Polish Medical Doctors," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    2. Janet K. Sluggett & Samanta Lalic & Sarah M. Hosking & Brett Ritchie & Jennifer McLoughlin & Terry Shortt & Leonie Robson & Tina Cooper & Kelly A. Cairns & Jenni Ilomäki & Renuka Visvanathan & J. Simo, 2020. "Root Cause Analysis to Identify Medication and Non-Medication Strategies to Prevent Infection-Related Hospitalizations from Australian Residential Aged Care Services," IJERPH, MDPI, vol. 17(9), pages 1-16, May.
    3. Xiujuan Chen & Linhai Wu & Xuyan Xie, 2018. "Assessing the Linkages between Knowledge and Use of Veterinary Antibiotics by Pig Farmers in Rural China," IJERPH, MDPI, vol. 15(6), pages 1-13, May.
    4. Jody L. Andersen & Gui-Xin He & Prathusha Kakarla & Ranjana KC & Sanath Kumar & Wazir Singh Lakra & Mun Mun Mukherjee & Indrika Ranaweera & Ugina Shrestha & Thuy Tran & Manuel F. Varela, 2015. "Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens," IJERPH, MDPI, vol. 12(2), pages 1-61, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick D Schloss, 2009. "A High-Throughput DNA Sequence Aligner for Microbial Ecology Studies," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-9, December.
    2. Iyiola Olatunji Oladunjoye & Yusuf Amuda Tajudeen & Habeebullah Jayeola Oladipo & Mona Said El-Sherbini, 2022. "Planetary Health and Traditional Medicine: A Potential Synergistic Approach to Tackle Antimicrobial Resistance," Challenges, MDPI, vol. 13(1), pages 1-10, June.
    3. Oliver Aasmets & Kertu Liis Krigul & Kreete Lüll & Andres Metspalu & Elin Org, 2022. "Gut metagenome associations with extensive digital health data in a volunteer-based Estonian microbiome cohort," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Eman M Fouda, 2017. "Airway Microbiota and Allergic Diseases: Clinical Implications," International Journal of Pulmonary & Respiratory Sciences, Juniper Publishers Inc., vol. 1(5), pages 1-5, May.
    5. Lena Takayasu & Wataru Suda & Eiichiro Watanabe & Shinji Fukuda & Kageyasu Takanashi & Hiroshi Ohno & Misako Takayasu & Hideki Takayasu & Masahira Hattori, 2017. "A 3-dimensional mathematical model of microbial proliferation that generates the characteristic cumulative relative abundance distributions in gut microbiomes," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-20, August.
    6. Eman M Fouda, 2017. "Airway Microbiota and Allergic Diseases: Clinical Implications," International Journal of Pulmonary & Respiratory Sciences, Juniper Publishers Inc., vol. 1(5), pages 119-124, May.
    7. Bo-Young Hong & Michel V Furtado Araujo & Linda D Strausbaugh & Evimaria Terzi & Effie Ioannidou & Patricia I Diaz, 2015. "Microbiome Profiles in Periodontitis in Relation to Host and Disease Characteristics," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-14, May.
    8. Rebecca Flancman & Ameet Singh & J Scott Weese, 2018. "Evaluation of the impact of dental prophylaxis on the oral microbiota of dogs," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-18, June.
    9. Xiaobo Yin & Seiji Kamba & Koki Yamamoto & Atsushi Ogura & Ernest Apondi Wandera & Mohammad Monir Shah & Hirokazu Seto & Takashi Kondo & Yoshio Ichinose & Makoto Hasegawa, 2022. "Analysis of Environmental and Pathogenic Bacteria Attached to Aerosol Particles Size-Separated with a Metal Mesh Device," IJERPH, MDPI, vol. 19(9), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:10:y:2013:i:9:p:4274-4305:d:28768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.