IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i7p151-d246976.html
   My bibliography  Save this article

An Efficient Method for Water Treatment of Artificial Ponds in Jordan Valley Based on Photovoltaic Pumping System

Author

Listed:
  • Tamer Khatib

    (Department of Energy Engineering and Environment, An-Najah National University, Nablus 97300, Palestine)

  • Sora Qalalweh

    (Department of Energy Engineering and Environment, An-Najah National University, Nablus 97300, Palestine)

  • Raghad Ameerah

    (Department of Energy Engineering and Environment, An-Najah National University, Nablus 97300, Palestine)

  • Ismail Warad

    (Department of Chemistry, An-Najah National University, Nablus 97300, Palestine)

Abstract

Jordan Valley area suffers from a lack of water because of the current political situation. Therefore, water distribution is being done on a periodic basis and farmers need to store water in artificial ponds on site so as to be able to irrigate their field during the anonymous days that water is not available from the main supply. However, artificial ponds may affect the environment negatively due to the plants that live in it such as algae, which attracts mosquitos and causes a bad smell. Thus, in this paper, a simple and low-cost photovoltaic based pumping system is proposed to inject a chemical material in the water of the artificial pond to get rid of algae. The proposed system consists of a pump that is powered by a photovoltaic module and pumps the proposed chemical material in the artificial pond using a rotary nozzle that is fixed on a pipe around the ponds. The system is affordable and reduces the production of the unwanted plants. As a result, the proposed system reduces chemical oxygen demand value, which is considered the main cause of algae blooming, from 7200 mg/L to 95 mg/L. The proposed product is powered by a 50 W foldable solar panel and it costs about 213 USD.

Suggested Citation

  • Tamer Khatib & Sora Qalalweh & Raghad Ameerah & Ismail Warad, 2019. "An Efficient Method for Water Treatment of Artificial Ponds in Jordan Valley Based on Photovoltaic Pumping System," Agriculture, MDPI, vol. 9(7), pages 1-12, July.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:7:p:151-:d:246976
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/7/151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/7/151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santosh Singh Raghuwanshi & Vikas Khare, 2018. "Sizing and modelling of stand-alone photovoltaic water pumping system for irrigation," Energy & Environment, , vol. 29(4), pages 473-491, June.
    2. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanley Y. B. Huang & Kuei-Hsien Chen & Yue-Shi Lee, 2021. "How to Promote Medium-Sized Farms to Adopt Environmental Strategy to Achieve Sustainable Production during the COVID-19 Pandemic?," Agriculture, MDPI, vol. 11(11), pages 1-8, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    2. Hossain, Md. Faruque, 2017. "Green science: Independent building technology to mitigate energy, environment, and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 695-705.
    3. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    4. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    5. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    6. Zi, Dan & Wang, Fujun & Wang, Chaoyue & Huang, Congbin & Shen, Lian, 2021. "Investigation on the air-core vortex in a vertical hydraulic intake system," Renewable Energy, Elsevier, vol. 177(C), pages 1333-1345.
    7. Haddad, S. & Benghanem, M. & Mellit, A. & Daffallah, K.O., 2015. "ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: Experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 635-643.
    8. Agir, Seven & Derin-Gure, Pinar & Senturk, Bilge, 2023. "Farmers’ perspectives on challenges and opportunities of agrivoltaics in Turkiye: An institutional perspective," Renewable Energy, Elsevier, vol. 212(C), pages 35-49.
    9. Chatterjee, Juhi & Kantikar, Tejal, 2024. "A Shift to Solar Irrigation Pump-sets: A Field Study of Two Villages in Uttar Pradesh, India," Review of Agrarian Studies, Foundation for Agrarian Studies, vol. 14(1).
    10. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    11. Bataineh, Khaled M., 2016. "Optimization analysis of solar thermal water pump," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 603-613.
    12. Bandaru, Rohinikumar & C., Muraleedharan & M.V., Pavan Kumar, 2019. "Modelling and dynamic simulation of solar-thermal energy conversion in an unconventional solar thermal water pump," Renewable Energy, Elsevier, vol. 134(C), pages 292-305.
    13. Closas, Alvar & Rap, Edwin, 2017. "Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations," Energy Policy, Elsevier, vol. 104(C), pages 33-37.
    14. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    15. Ahmed, Eihab E.E. & Demirci, Alpaslan, 2022. "Multi-stage and multi-objective optimization for optimal sizing of stand-alone photovoltaic water pumping systems," Energy, Elsevier, vol. 252(C).
    16. Desikan Ramesh & Mohanrangan Chandrasekaran & Raga Palanisamy Soundararajan & Paravaikkarasu Pillai Subramanian & Vijayakumar Palled & Deivasigamani Praveen Kumar, 2022. "Solar-Powered Plant Protection Equipment: Perspective and Prospects," Energies, MDPI, vol. 15(19), pages 1-21, October.
    17. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    18. Jouda Arfaoui & Hegazy Rezk & Mujahed Al-Dhaifallah & Feki Elyes & Mami Abdelkader, 2019. "Numerical Performance Evaluation of Solar Photovoltaic Water Pumping System under Partial Shading Condition using Modern Optimization," Mathematics, MDPI, vol. 7(11), pages 1-18, November.
    19. Zaibi, Malek & Champenois, Gérard & Roboam, Xavier & Belhadj, Jamel & Sareni, Bruno, 2018. "Smart power management of a hybrid photovoltaic/wind stand-alone system coupling battery storage and hydraulic network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 210-228.
    20. Chatterjee, Juhi & Kanitkar, Tejal, 2024. "A Shift to Solar Irrigation Pump-Sets: A Case Study from Uttar Pradesh, India," Review of Agrarian Studies, Foundation for Agrarian Studies, vol. 14(1), June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:7:p:151-:d:246976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.