IDEAS home Printed from https://ideas.repec.org/a/ags/ragrar/347633.html
   My bibliography  Save this article

A Shift to Solar Irrigation Pump-Sets: A Case Study from Uttar Pradesh, India

Author

Listed:
  • Chatterjee, Juhi
  • Kanitkar, Tejal

Abstract

Renewable energy technologies are being actively encouraged in India by policies that promote public and private investment in renewable energy. New regulatory and financial incentives to establish the use of renewable energy, especially in irrigation, have created the potential for a shift towards renewable sources in the sector. This paper analyses the differential nature of the impact and dynamics involved in shifting to solar pump-sets in two villages in Hardoi district, Uttar Pradesh, India. The short-term impact of a private solar mini-grid intervention is evaluated using a pre- and post-intervention evaluation of beneficiaries and non-beneficiaries across different socio-economic classes. The paper offers a comparative analysis of the irrigation costs associated with various fuels, alongside a comparison of annualised lifecycle cost (ALCC) across varying technological and regulatory configurations, demonstrating that energy-efficient electric pump-sets might still be cheaper than all configurations of solar energy. The study found that grid-connected solar pumps are only viable when operated for less than 500 hours annually, while off-grid solar pumps are more costeffective at higher usage levels. The paper also outlines a framework for the implementation of a hypothetical scheme aimed at promoting solar irrigation among farmers with landholdings exceeding 6 acres. It provides estimates of the potential district-wide costs associated with such a scheme’s implementation and finds that implementing a shift to solar for farmers operating on less than 4 acres of land is economically unviable, since grid-based electricity is the least-cost option with respect to irrigation for this group at present. This study thus argues for designing schemes for the promotion of solar technologies that target beneficiaries based on the size of land holdings. Keywords: Renewable energy, solar irrigation, solar pump-sets, impact evaluation, irrigation, subsidies, policy, Uttar Pradesh, India.

Suggested Citation

  • Chatterjee, Juhi & Kanitkar, Tejal, 2024. "A Shift to Solar Irrigation Pump-Sets: A Case Study from Uttar Pradesh, India," Review of Agrarian Studies, Foundation for Agrarian Studies, vol. 14(01), June.
  • Handle: RePEc:ags:ragrar:347633
    DOI: 10.22004/ag.econ.347633
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/347633/files/RAS658_A_Shift_Solar_Irrigation_Pump_Sets.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.347633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Modak, Tapas Singh, 2018. "From Public to Private Irrigation: Implications for Equity in Access to Water," Review of Agrarian Studies, Foundation for Agrarian Studies, vol. 8(01), July.
    2. Closas, Alvar & Rap, Edwin, 2017. "Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations," Energy Policy, Elsevier, vol. 104(C), pages 33-37.
    3. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    4. Santra, Priyabrata, 2021. "Performance evaluation of solar PV pumping system for providing irrigation through micro-irrigation techniques using surface water resources in hot arid region of India," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Sontake, Vimal Chand & Kalamkar, Vilas R., 2016. "Solar photovoltaic water pumping system - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1038-1067.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatterjee, Juhi & Kantikar, Tejal, 2024. "A Shift to Solar Irrigation Pump-sets: A Field Study of Two Villages in Uttar Pradesh, India," Review of Agrarian Studies, Foundation for Agrarian Studies, vol. 14(01).
    2. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    3. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    4. Elshurafa, Amro M. & Alatawi, Hatem & Hasanov, Fakhri J. & Algahtani, Goblan J. & Felder, Frank A., 2022. "Cost, emission, and macroeconomic implications of diesel displacement in the Saudi agricultural sector: Options and policy insights," Energy Policy, Elsevier, vol. 168(C).
    5. Ahmed, Eihab E.E. & Demirci, Alpaslan, 2022. "Multi-stage and multi-objective optimization for optimal sizing of stand-alone photovoltaic water pumping systems," Energy, Elsevier, vol. 252(C).
    6. Camille Soenen & Vincent Reinbold & Simon Meunier & Judith A. Cherni & Arouna Darga & Philippe Dessante & Loïc Quéval, 2021. "Comparison of Tank and Battery Storages for Photovoltaic Water Pumping," Energies, MDPI, vol. 14(9), pages 1-16, April.
    7. Parvaresh Rizi, Atefeh & Ashrafzadeh, Afshin & Ramezani, Azita, 2019. "A financial comparative study of solar and regular irrigation pumps: Case studies in eastern and southern Iran," Renewable Energy, Elsevier, vol. 138(C), pages 1096-1103.
    8. Lefore, Nicole & Closas, Alvar & Schmitter, Petra, 2021. "Solar for all: A framework to deliver inclusive and environmentally sustainable solar irrigation for smallholder agriculture," Energy Policy, Elsevier, vol. 154(C).
    9. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    10. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    11. Hossain, Md. Faruque, 2017. "Green science: Independent building technology to mitigate energy, environment, and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 695-705.
    12. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    13. Zi, Dan & Wang, Fujun & Wang, Chaoyue & Huang, Congbin & Shen, Lian, 2021. "Investigation on the air-core vortex in a vertical hydraulic intake system," Renewable Energy, Elsevier, vol. 177(C), pages 1333-1345.
    14. Miguel Ángel Pardo & Héctor Fernández & Antonio Jodar-Abellan, 2020. "Converting a Water Pressurized Network in a Small Town into a Solar Power Water System," Energies, MDPI, vol. 13(15), pages 1-26, August.
    15. Haddad, S. & Benghanem, M. & Mellit, A. & Daffallah, K.O., 2015. "ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: Experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 635-643.
    16. Agir, Seven & Derin-Gure, Pinar & Senturk, Bilge, 2023. "Farmers’ perspectives on challenges and opportunities of agrivoltaics in Turkiye: An institutional perspective," Renewable Energy, Elsevier, vol. 212(C), pages 35-49.
    17. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    18. Kiratu, Nixon Murathi & Aarnoudse, Eefje & Petrick, Martin, 2024. "Irrigation-nutrition linkages under farmer-led and public irrigation schemes in Kenya," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344347, International Association of Agricultural Economists (IAAE).
    19. Przemysław Średziński & Martyna Świętochowska & Kamil Świętochowski & Joanna Gwoździej-Mazur, 2022. "Analysis of the Use of the PV Installation in the Power Supply of the Water Pumping Station," Energies, MDPI, vol. 15(24), pages 1-13, December.
    20. Rahman, Syed Mahbubur & Mori, Akihisa & Rahman, Syed Mustafizur, 2022. "How does climate adaptation co-benefits help scale-up solar-powered irrigation? A case of the Barind Tract, Bangladesh," Renewable Energy, Elsevier, vol. 182(C), pages 1039-1048.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ragrar:347633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/faskoin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.