IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v49y2015icp1084-1099.html
   My bibliography  Save this article

Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies

Author

Listed:
  • Chandel, S.S.
  • Nagaraju Naik, M.
  • Chandel, Rahul

Abstract

The deficit in electricity and high diesel costs affects the pumping requirements of community water supplies and irrigation; so using solar energy for water pumping is a promising alternative to conventional electricity and diesel based pumping systems. Solar water pumping is based on photovoltaic (PV) technology that converts solar energy into electrical energy to run a DC or AC motor based water pump. The main objective of the study is to present a comprehensive literature review of solar pumping technology, evaluate the economic viability, identify research gaps and impediments in the widespread propagation of solar water pumping systems and technology. The study focuses on update on solar water pumping technology, performance analysis, optimum sizing, degradation of PV generator supplying power to pump, economic and environmental aspects and advances in PV materials and efficiency improvements. An update on the current state of research and utilization of solar water pumping technology is presented. Factors affecting performance of PV water pumping system, degradation of PV modules and efficiency improving techniques of PV water pumping systems are identified. Solar water pumping is found to be economically viable in comparison to electricity or diesel based systems for irrigation and water supplies in rural, urban and remote regions. The investment payback for some PV water pumping systems is found to be 4–6 years. The recent Indian incentives for PV pumping and policy initiatives for the promotion of solar water pumping in developing countries are also discussed. Potential follow-up research areas are also identified.

Suggested Citation

  • Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
  • Handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:1084-1099
    DOI: 10.1016/j.rser.2015.04.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115003536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barlow, R. & McNelis, B. & Derrick, A., 1993. "Solar Pumping; An Introduction and Update on the Technology, Performance, Costs and Economics," Papers 168, World Bank - Technical Papers.
    2. Kaldellis, J.K. & Meidanis, E. & Zafirakis, D., 2011. "Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation," Applied Energy, Elsevier, vol. 88(12), pages 4556-4562.
    3. Meah, Kala & Fletcher, Steven & Ula, Sadrul, 2008. "Solar photovoltaic water pumping for remote locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 472-487, February.
    4. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    5. Atlam, Ozcan & Kolhe, Mohan, 2013. "Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system," Energy, Elsevier, vol. 57(C), pages 692-698.
    6. Bhave, A. G., 1994. "Potential for solar water-pumping systems in India," Applied Energy, Elsevier, vol. 48(3), pages 197-200.
    7. Ould-Amrouche, S. & Rekioua, D. & Hamidat, A., 2010. "Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential," Applied Energy, Elsevier, vol. 87(11), pages 3451-3459, November.
    8. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    9. Nam Joong Jeon & Jun Hong Noh & Woon Seok Yang & Young Chan Kim & Seungchan Ryu & Jangwon Seo & Sang Il Seok, 2015. "Compositional engineering of perovskite materials for high-performance solar cells," Nature, Nature, vol. 517(7535), pages 476-480, January.
    10. Abdolzadeh, M. & Ameri, M., 2009. "Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells," Renewable Energy, Elsevier, vol. 34(1), pages 91-96.
    11. Hamidat, A., 1999. "Simulation of the performance and cost calculations of the surface pump," Renewable Energy, Elsevier, vol. 18(3), pages 383-392.
    12. Jafar, M, 2000. "A model for small-scale photovoltaic solar water pumping," Renewable Energy, Elsevier, vol. 19(1), pages 85-90.
    13. Kolhe, Mohanlal & Kolhe, Sunita & Joshi, J. C., 2002. "Economic viability of stand-alone solar photovoltaic system in comparison with diesel-powered system for India," Energy Economics, Elsevier, vol. 24(2), pages 155-165, March.
    14. Pande, P.C. & Singh, A.K. & Ansari, S. & Vyas, S.K. & Dave, B.K., 2003. "Design development and testing of a solar PV pump based drip system for orchards," Renewable Energy, Elsevier, vol. 28(3), pages 385-396.
    15. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    16. Hrayshat, Eyad S. & Al-Soud, Mohammed S., 2004. "Potential of solar energy development for water pumping in Jordan," Renewable Energy, Elsevier, vol. 29(8), pages 1393-1399.
    17. Kaldellis, J.K. & Spyropoulos, G.C. & Kavadias, K.A. & Koronaki, I.P., 2009. "Experimental validation of autonomous PV-based water pumping system optimum sizing," Renewable Energy, Elsevier, vol. 34(4), pages 1106-1113.
    18. Hamidat, A. & Benyoucef, B., 2008. "Mathematic models of photovoltaic motor-pump systems," Renewable Energy, Elsevier, vol. 33(5), pages 933-942.
    19. Chandel, S.S. & Nagaraju Naik, M. & Sharma, Vikrant & Chandel, Rahul, 2015. "Degradation analysis of 28 year field exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India," Renewable Energy, Elsevier, vol. 78(C), pages 193-202.
    20. Meah, Kala & Ula, Sadrul & Barrett, Steven, 2008. "Solar photovoltaic water pumping--opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1162-1175, May.
    21. Alawaji, Saleh & Smiai, Mohammed Salah & Rafique, Shah & Stafford, Byron, 1995. "PV-powered water pumping and desalination plant for remote areas in Saudi Arabia," Applied Energy, Elsevier, vol. 52(2-3), pages 283-289.
    22. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    2. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    3. Sontake, Vimal Chand & Kalamkar, Vilas R., 2016. "Solar photovoltaic water pumping system - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1038-1067.
    4. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    5. Kaldellis, J.K. & Meidanis, E. & Zafirakis, D., 2011. "Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation," Applied Energy, Elsevier, vol. 88(12), pages 4556-4562.
    6. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    7. Nogueira, Carlos Eduardo Camargo & Bedin, Janaína & Niedzialkoski, Rosana Krauss & de Souza, Samuel Nelson Melegari & das Neves, João Carlos Munhoz, 2015. "Performance of monocrystalline and polycrystalline solar panels in a water pumping system in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1610-1616.
    8. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao, 2017. "Research and current status of the solar photovoltaic water pumping system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 440-458.
    9. Yaichi, Mohammed & Fellah, Mohammed-Karim & Tayebi, Azzedinne & Boutadara, Abdelkader, 2019. "A fast and simplified method using non-linear translation of operating points for PV modules energy output and daily pumped water to predict the performance of a stand-alone photovoltaic pumping syste," Renewable Energy, Elsevier, vol. 133(C), pages 248-260.
    10. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    11. Al-Smairan, Mohammad, 2012. "Application of photovoltaic array for pumping water as an alternative to diesel engines in Jordan Badia, Tall Hassan station: Case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4500-4507.
    12. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    13. Periasamy, Packiam & Jain, N.K. & Singh, I.P., 2015. "A review on development of photovoltaic water pumping system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 918-925.
    14. Meunier, Simon & Heinrich, Matthias & Quéval, Loïc & Cherni, Judith A. & Vido, Lionel & Darga, Arouna & Dessante, Philippe & Multon, Bernard & Kitanidis, Peter K. & Marchand, Claude, 2019. "A validated model of a photovoltaic water pumping system for off-grid rural communities," Applied Energy, Elsevier, vol. 241(C), pages 580-591.
    15. Hamidat, A. & Benyoucef, B., 2009. "Systematic procedures for sizing photovoltaic pumping system, using water tank storage," Energy Policy, Elsevier, vol. 37(4), pages 1489-1501, April.
    16. Fu, Huide & Li, Guiqiang & Li, Fubing, 2019. "Performance comparison of photovoltaic/thermal solar water heating systems with direct-coupled photovoltaic pump, traditional pump and natural circulation," Renewable Energy, Elsevier, vol. 136(C), pages 463-472.
    17. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    18. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    19. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    20. Senol, Ramazan, 2012. "An analysis of solar energy and irrigation systems in Turkey," Energy Policy, Elsevier, vol. 47(C), pages 478-486.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:1084-1099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.