IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i11p1123-d287842.html
   My bibliography  Save this article

Numerical Performance Evaluation of Solar Photovoltaic Water Pumping System under Partial Shading Condition using Modern Optimization

Author

Listed:
  • Jouda Arfaoui

    (National School of Engineering of Tunis, University of Tunis El Manar, BP 37, Tunis 1002, Tunisia)

  • Hegazy Rezk

    (College of Engineering at Wadi Addawaser, Prince Sattam Bin Wadi Addawaser Abdulaziz University, Addawaser 11991, Saudi Arabia
    Electrical Engineering Department, Faculty of Engineering, Minia University, Al Minya 61519, Egypt)

  • Mujahed Al-Dhaifallah

    (Systems Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Feki Elyes

    (Department of Physics, Faculty of Sciences, University of Tunis El Manar, BP 37, Tunis 1002, Tunisia)

  • Mami Abdelkader

    (Department of Physics, Faculty of Sciences, University of Tunis El Manar, BP 37, Tunis 1002, Tunisia)

Abstract

Renewable energy is an attractive solution for water pumping systems particularly in isolated regions where the utility grid is unavailable. An attempt is made to improve the performance of solar photovoltaic water pumping system (SPVWPS) under partial shading condition. Under this condition, the power versus voltage curve has more than one maximum power point (MPP), which makes the tracking of global MPP not an easy task. Two MPP tracking (MPPT) strategies are proposed and compared for tracking MPP of SPVWPS under shading condition. The first method is based on the classical perturb and observe (P&O) and the other method is based on a Salp Swarm Algorithm (SSA). Based on extensive MATLAB simulation, it is found that the SSA method can provide higher photovoltaic (PV) generated power than the P&O method under shading condition. Consequently, the pump flowrate is increased. But, under normal distribution of solar radiation, both MPPT techniques can extract the maximum power but SSA is considered a time-consuming approach. Moreover, SSA is compared with particle swarm optimization (PSO) and genetic algorithm (GA). The obtained results ensure the superiority of SSA compared with PSO and GA. SSA has high successful rate of reaching true global MPP.

Suggested Citation

  • Jouda Arfaoui & Hegazy Rezk & Mujahed Al-Dhaifallah & Feki Elyes & Mami Abdelkader, 2019. "Numerical Performance Evaluation of Solar Photovoltaic Water Pumping System under Partial Shading Condition using Modern Optimization," Mathematics, MDPI, vol. 7(11), pages 1-18, November.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1123-:d:287842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/11/1123/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/11/1123/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Seyedmahmoudian & Ben Horan & Rasoul Rahmani & Aman Maung Than Oo & Alex Stojcevski, 2016. "Efficient Photovoltaic System Maximum Power Point Tracking Using a New Technique," Energies, MDPI, vol. 9(3), pages 1-18, March.
    2. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    3. Meah, Kala & Fletcher, Steven & Ula, Sadrul, 2008. "Solar photovoltaic water pumping for remote locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 472-487, February.
    4. Gao, Xuerui & Liu, Jiahong & Zhang, Jun & Yan, Jinyue & Bao, Shujun & Xu, He & Qin, Tao, 2013. "Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table," Applied Energy, Elsevier, vol. 105(C), pages 182-193.
    5. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    6. Mohamed Tolba & Hegazy Rezk & Ahmed A. Zaki Diab & Mujahed Al-Dhaifallah, 2018. "A Novel Robust Methodology Based Salp Swarm Algorithm for Allocation and Capacity of Renewable Distributed Generators on Distribution Grids," Energies, MDPI, vol. 11(10), pages 1-34, September.
    7. Rezk, Hegazy & Fathy, Ahmed & Abdelaziz, Almoataz Y., 2017. "A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 377-386.
    8. Fathy, Ahmed & Rezk, Hegazy, 2017. "Parameter estimation of photovoltaic system using imperialist competitive algorithm," Renewable Energy, Elsevier, vol. 111(C), pages 307-320.
    9. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao & Ji, Jie, 2018. "Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 840-873.
    10. Hamidat, A & Benyoucef, B & Hartani, T, 2003. "Small-scale irrigation with photovoltaic water pumping system in Sahara regions," Renewable Energy, Elsevier, vol. 28(7), pages 1081-1096.
    11. Marmoush, Mohamed M. & Rezk, Hegazy & Shehata, Nabila & Henry, Jean & Gomaa, Mohamed R., 2018. "A novel merging Tubular Daylight Device with Solar Water Heater – Experimental study," Renewable Energy, Elsevier, vol. 125(C), pages 947-961.
    12. Himri, Y. & Malik, Arif S. & Boudghene Stambouli, A. & Himri, S. & Draoui, B., 2009. "Review and use of the Algerian renewable energy for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1584-1591, August.
    13. Meah, Kala & Ula, Sadrul & Barrett, Steven, 2008. "Solar photovoltaic water pumping--opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1162-1175, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    3. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    4. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    5. López-Luque, R. & Reca, J. & Martínez, J., 2015. "Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards," Applied Energy, Elsevier, vol. 149(C), pages 13-23.
    6. Carricondo-Antón, J.M. & Jiménez-Bello, M.A. & Manzano Juárez, J. & Royuela Tomas, A. & Sala, A., 2022. "Evaluating the use of meteorological predictions in directly pumped irrigational operations using photovoltaic energy," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Yu, Yingdong & Liu, Jiahong & Wang, Ying & Xiang, Chenyao & Zhou, Jinjun, 2018. "Practicality of using solar energy for cassava irrigation in the Guangxi Autonomous Region, China," Applied Energy, Elsevier, vol. 230(C), pages 31-41.
    8. Kaldellis, J.K. & Meidanis, E. & Zafirakis, D., 2011. "Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation," Applied Energy, Elsevier, vol. 88(12), pages 4556-4562.
    9. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
    10. Benbelkacem, Samir & Belhocine, Mahmoud & Bellarbi, Abdelkader & Zenati-Henda, Nadia & Tadjine, Mohamed, 2013. "Augmented reality for photovoltaic pumping systems maintenance tasks," Renewable Energy, Elsevier, vol. 55(C), pages 428-437.
    11. Swan, Lukas G. & Allen, Peter L., 2010. "Integrated solar pump design incorporating a brushless DC motor for use in a solar heating system," Renewable Energy, Elsevier, vol. 35(9), pages 2015-2026.
    12. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    13. Reca, J. & Torrente, C. & López-Luque, R. & Martínez, J., 2016. "Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses," Renewable Energy, Elsevier, vol. 85(C), pages 1143-1154.
    14. Kaldellis, J.K. & Spyropoulos, G.C. & Kavadias, K.A. & Koronaki, I.P., 2009. "Experimental validation of autonomous PV-based water pumping system optimum sizing," Renewable Energy, Elsevier, vol. 34(4), pages 1106-1113.
    15. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    16. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    17. Kelley, Leah C. & Gilbertson, Eric & Sheikh, Anwar & Eppinger, Steven D. & Dubowsky, Steven, 2010. "On the feasibility of solar-powered irrigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2669-2682, December.
    18. Ould-Amrouche, S. & Rekioua, D. & Hamidat, A., 2010. "Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential," Applied Energy, Elsevier, vol. 87(11), pages 3451-3459, November.
    19. Rubio-Aliaga, Á. & García-Cascales, M.S. & Sánchez-Lozano, J.M. & Molina-García, A., 2019. "Multidimensional analysis of groundwater pumping for irrigation purposes: Economic, energy and environmental characterization for PV power plant integration," Renewable Energy, Elsevier, vol. 138(C), pages 174-186.
    20. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1123-:d:287842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.