IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v146y2018icp210-228.html
   My bibliography  Save this article

Smart power management of a hybrid photovoltaic/wind stand-alone system coupling battery storage and hydraulic network

Author

Listed:
  • Zaibi, Malek
  • Champenois, Gérard
  • Roboam, Xavier
  • Belhadj, Jamel
  • Sareni, Bruno

Abstract

An off-grid energy system based on renewable photovoltaics (PV) and wind turbines (WT) generators is coupled via converters to electric and hydraulic networks. The electric network is composed of consumers and of a battery bank for electrical storage, while the hydraulic part is made of motor-pumps and hydraulic tanks for water production and desalination. Both battery and water tanks are used to optimize the power management of both electric and hydraulic subsystems by ensuring electric load demand and by reducing at the same time water deficit following the operation of the renewable intermittent source. Thus, both electric and hydraulic subsystems are strongly coupled in terms of energy making necessary to manage the power flows provided by renewable sources to optimize the overall system performance. In this paper, two kinds of management strategies are then compared in the way they share the hybrid power sources between the storage devices (battery and tanks) and the electrical/hydraulic loads. The first approach deals with an “uncoupled power management” in which the operation of electrical and hydraulic loads does not depend on the state of the intermittent renewable sources: in particular, hydraulic pumps are operated only taking account of water demand and tank filling but without considering power sources. On the contrary, given the available power produced by the sources, the second class of strategy (i.e. the “coupled management strategy”) consists of a “smart” power sharing between the electrical and hydraulic networks with regard to the battery SOC and the tank L1 and L2. A dynamic simulator of the hybrid energy system has been developed and tested using a MATLAB environment. The system performance is shown under the two investigated approaches (uncoupled vs coupled). Several tests are carried out using real meteorological data of a remote area and a practical load demand profile. The simulation results show that the “coupled strategy” clearly outperforms the classical “uncoupled” management strategies.

Suggested Citation

  • Zaibi, Malek & Champenois, Gérard & Roboam, Xavier & Belhadj, Jamel & Sareni, Bruno, 2018. "Smart power management of a hybrid photovoltaic/wind stand-alone system coupling battery storage and hydraulic network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 210-228.
  • Handle: RePEc:eee:matcom:v:146:y:2018:i:c:p:210-228
    DOI: 10.1016/j.matcom.2016.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475416301768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2016.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    2. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    3. Torreglosa, Juan P. & García, Pablo & Fernández, Luis M. & Jurado, Francisco, 2015. "Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system," Renewable Energy, Elsevier, vol. 74(C), pages 326-336.
    4. Daud, Abdel-Karim & Ismail, Mahmoud S., 2012. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 44(C), pages 215-224.
    5. Giaouris, Damian & Papadopoulos, Athanasios I. & Ziogou, Chrysovalantou & Ipsakis, Dimitris & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos & Stergiopoulos, Fotis & Elmasides, Costas, 2013. "Performance investigation of a hybrid renewable power generation and storage system using systemic power management models," Energy, Elsevier, vol. 61(C), pages 621-635.
    6. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    7. Hofierka, Jaroslav & Kaňuk, Ján, 2009. "Assessment of photovoltaic potential in urban areas using open-source solar radiation tools," Renewable Energy, Elsevier, vol. 34(10), pages 2206-2214.
    8. Bridier, Laurent & Hernández-Torres, David & David, Mathieu & Lauret, Phillipe, 2016. "A heuristic approach for optimal sizing of ESS coupled with intermittent renewable sources systems," Renewable Energy, Elsevier, vol. 91(C), pages 155-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    3. Carlo Bianca, 2022. "On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives," Energies, MDPI, vol. 15(21), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kallel, Randa & Boukettaya, Ghada & Krichen, Lotfi, 2015. "Demand side management of household appliances in stand-alone hybrid photovoltaic system," Renewable Energy, Elsevier, vol. 81(C), pages 123-135.
    2. Bhandari, Binayak & Lee, Kyung-Tae & Lee, Caroline Sunyong & Song, Chul-Ki & Maskey, Ramesh K. & Ahn, Sung-Hoon, 2014. "A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources," Applied Energy, Elsevier, vol. 133(C), pages 236-242.
    3. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    4. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    5. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    6. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    7. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    8. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    9. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    10. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    11. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    12. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Cohen, Miri Weiss & Reis, Agnaldo J.R. & Silva, Sidelmo M. & Souza, Marcone J.F. & Fleming, Peter J. & Guimarães, Frederico G., 2016. "Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid," Renewable Energy, Elsevier, vol. 89(C), pages 730-742.
    13. Ghaith, Ahmad F. & Epplin, Francis M. & Frazier, R. Scott, 2017. "Economics of grid-tied household solar panel systems versus grid-only electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 407-424.
    14. Zi, Dan & Wang, Fujun & Wang, Chaoyue & Huang, Congbin & Shen, Lian, 2021. "Investigation on the air-core vortex in a vertical hydraulic intake system," Renewable Energy, Elsevier, vol. 177(C), pages 1333-1345.
    15. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    16. Haddad, S. & Benghanem, M. & Mellit, A. & Daffallah, K.O., 2015. "ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: Experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 635-643.
    17. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    18. Aleksandra Besser & Jan K. Kazak & Małgorzata Świąder & Szymon Szewrański, 2019. "A Customized Decision Support System for Renewable Energy Application by Housing Association," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    19. Rezzouk, H. & Mellit, A., 2015. "Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1134-1150.
    20. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:146:y:2018:i:c:p:210-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.