IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i10p209-d269739.html
   My bibliography  Save this article

Abiotic and Biotic Limitations to Nodulation by Leguminous Cover Crops in South Texas

Author

Listed:
  • Stephanie Kasper

    (School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA)

  • Bradley Christoffersen

    (Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA)

  • Pushpa Soti

    (Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA)

  • Alexis Racelis

    (School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA)

Abstract

Many farms use leguminous cover crops as a nutrient management strategy to reduce their need for nitrogen fertilizer. When they are effective, leguminous cover crops are a valuable tool for sustainable nutrient management. However, the symbiotic partnership between legumes and nitrogen fixing rhizobia is vulnerable to several abiotic and biotic stressors that reduce nitrogen fixation efficiency in real world contexts. Sometimes, despite inoculation with rhizobial strains, this symbiosis fails to form. Such failure was observed in a 14-acre winter cover crop trial in the Rio Grande Valley (RGV) of Texas when three legume species produced no signs of nodulation or nitrogen fixation. This study examined the role of nitrogen, phosphorus, moisture, micronutrients, and native microbial communities in the nodulation of cowpea ( Vigna unguiculata L. Walp) and assessed arbuscular mycorrhizal fungi as an intervention to improve nodulation. Results from two controlled studies confirm moisture and native microbial communities as major factors in nodulation success. Micronutrients showed mixed impacts on nodulation depending on plant stress conditions. Nitrogen and phosphorus deficiencies, however, were not likely causes, nor was mycorrhizal inoculation an effective intervention to improve nodulation. Inoculation method also had a major impact on nodulation rates. Continued research on improved inoculation practices and other ways to maximize nitrogen fixation efficiency will be required to increase successful on-farm implementation.

Suggested Citation

  • Stephanie Kasper & Bradley Christoffersen & Pushpa Soti & Alexis Racelis, 2019. "Abiotic and Biotic Limitations to Nodulation by Leguminous Cover Crops in South Texas," Agriculture, MDPI, vol. 9(10), pages 1-20, September.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:10:p:209-:d:269739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/10/209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/10/209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. E. Drinkwater & P. Wagoner & M. Sarrantonio, 1998. "Legume-based cropping systems have reduced carbon and nitrogen losses," Nature, Nature, vol. 396(6708), pages 262-265, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Muller, Adrian, 2006. "Sustainable Agriculture and the Production of Biomass for Energy Use," Working Papers in Economics 216, University of Gothenburg, Department of Economics, revised 01 Aug 2008.
    3. Lucas Contarato Pilon & Jordano Vaz Ambus & Elena Blume & Rodrigo Josemar Seminoti Jacques & José Miguel Reichert, 2023. "Citrus Orchards in Agroforestry, Organic, and Conventional Systems: Soil Quality and Functioning," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    4. Mousumi Ghosh & Waqar Ashiq & Hiteshkumar Bhogilal Vasava & Duminda N. Vidana Gamage & Prasanta K. Patra & Asim Biswas, 2021. "Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    5. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Rhonda R. Janke & Daniel Menezes-Blackburn & Asma Al Hamdi & Abdul Rehman, 2024. "Organic Management and Intercropping of Fruit Perennials Increase Soil Microbial Diversity and Activity in Arid Zone Orchard Cropping Systems," Sustainability, MDPI, vol. 16(21), pages 1-15, October.
    7. Jouan, Julia & Heinrichs, Julia & Britz, Wolfgang & Pahmeyer, Christoph, 2019. "Legume production challenged by European policy coherence: a case-study approach from French and German dairy farms," 172nd EAAE Seminar, May 28-29, 2019, Brussels, Belgium 289765, European Association of Agricultural Economists.
    8. Sanna Lötjönen & Markku Ollikainen, 2017. "Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(4), pages 283-312, December.
    9. Argiles, Josep M. & Brown, Nestor Duch, 2011. "A comparison of the economic and environmental performances of conventional and organic farming: evidence from financial statements," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 11(1), pages 1-18, January.
    10. Aravindakshan, Sreejith & Sherief, Aliyaru Kunju, 2010. "The wanted change against climate change: assessing the role of organic farming as an adaptation strategy," MPRA Paper 27205, University Library of Munich, Germany.
    11. Susanne Wiesner & Alison J. Duff & Ankur R. Desai & Kevin Panke-Buisse, 2020. "Increasing Dairy Sustainability with Integrated Crop–Livestock Farming," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    12. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    13. Ribaudo, Marc & Hansen, LeRoy T. & Hellerstein, Daniel & Greene, Catherine R., 2008. "The Use of Markets To Increase Private Investment in Environmental Stewardship," Economic Research Report 56473, United States Department of Agriculture, Economic Research Service.
    14. Tiziano Gomiero, 2013. "Alternative Land Management Strategies and Their Impact on Soil Conservation," Agriculture, MDPI, vol. 3(3), pages 1-20, August.
    15. Greene, Catherine R. & Kremen, Amy, 2003. "U.S. Organic Farming In 2000-2001: Adoption Of Certified Systems," Agricultural Information Bulletins 33769, United States Department of Agriculture, Economic Research Service.
    16. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    17. Aimee N. Hafla & Jennifer W. MacAdam & Kathy J. Soder, 2013. "Sustainability of US Organic Beef and Dairy Production Systems: Soil, Plant and Cattle Interactions," Sustainability, MDPI, vol. 5(7), pages 1-26, July.
    18. Jules Pretty & Rachel Hine, 2000. "The promising spread of sustainable agriculture in Asia," Natural Resources Forum, Blackwell Publishing, vol. 24(2), pages 107-121, May.
    19. Julia Jouan & Julia Heinrichs & Wolfgang Britz & Christoph Pahmeyer, 2019. "Integrated assessment of legume production challenged by European policy interaction: a case-study approach from French and German dairy farms," Working Papers hal-02501428, HAL.
    20. Mihai Buta & Gheorghe Blaga & Laura Paulette & Ioan Păcurar & Sanda Roșca & Orsolya Borsai & Florina Grecu & Pauliuc Ecaterina Sînziana & Cornel Negrușier, 2019. "Soil Reclamation of Abandoned Mine Lands by Revegetation in Northwestern Part of Transylvania: A 40-Year Retrospective Study," Sustainability, MDPI, vol. 11(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:10:p:209-:d:269739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.