IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3393-d241387.html
   My bibliography  Save this article

Soil Reclamation of Abandoned Mine Lands by Revegetation in Northwestern Part of Transylvania: A 40-Year Retrospective Study

Author

Listed:
  • Mihai Buta

    (Department of Soil Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania)

  • Gheorghe Blaga

    (Department of Soil Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania)

  • Laura Paulette

    (Department of Soil Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania)

  • Ioan Păcurar

    (Department of Soil Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania)

  • Sanda Roșca

    (Department of Geology, “Babeș-Bolyai” University, Mihail Kogălniceanu 1, 400084 Cluj-Napoca, Romania)

  • Orsolya Borsai

    (Department of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania)

  • Florina Grecu

    (Department of Land Measurements, Management, Mechanization, University of Craiova, Libertăţii 19, 200421 Craiova, Romania)

  • Pauliuc Ecaterina Sînziana

    (Department of Soil Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania)

  • Cornel Negrușier

    (Department of Soil Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania)

Abstract

Mining activities for mineral resources over the years have resulted in major soil damage. Due the removal process of desired mineral materials, soil textures have been destroyed, various nutrient cycles have been disturbed, and microbial communities have been altered, affecting vegetation and leading to the destruction of wide areas of land in many countries. Therefore, soil restoration of abandoned mining lands became a very important part of sustainable development strategies and also prescribed by law in several countries. The main aims of this study were to develop an ecological land restoration strategy to the degraded lands due former kaolin, quartz sand, and iron mining located in Aghireșu and Căpușu Mare in Cluj County, in the Northwestern part of Transylvania from Romania and monitor soil quality changes over 40 years. To assess the effectiveness of soil reclamation of mine lands, 30 soil profiles were examined and 450 soil samples were collected from three depths (0–20 cm, 20–50 cm, and 50–80 cm) and subjected to physical and chemical analyses, and compared for their sustainable and beneficial use. All the proposed plant covers (natural grassland, pasture cover, black locust, Norway spruce, and scots pine) significantly improved the overall soil quality with the increasing years of reclamation following various patterns. Pasture cover most significantly enhanced the soil’s microbial activity, organic carbon, nitrogen, phosphorus, and potassium content followed by natural grassland. The results of this study show that considerable changes in soil quality was reached by revegetation of these abandoned mine lands restoring their ecological integrity and self-sustainability.

Suggested Citation

  • Mihai Buta & Gheorghe Blaga & Laura Paulette & Ioan Păcurar & Sanda Roșca & Orsolya Borsai & Florina Grecu & Pauliuc Ecaterina Sînziana & Cornel Negrușier, 2019. "Soil Reclamation of Abandoned Mine Lands by Revegetation in Northwestern Part of Transylvania: A 40-Year Retrospective Study," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3393-:d:241387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3393/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3393/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heinz Schandl & Franzi Poldy & Graham M. Turner & Thomas G. Measham & Daniel H. Walker & Nina Eisenmenger, 2008. "Australia's Resource Use Trajectories," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 669-685, October.
    2. Zhenqi Hu & Linghua Duo & Fang Shao, 2018. "Optimal Thickness of Soil Cover for Reclaiming Subsided Land with Yellow River Sediments," Sustainability, MDPI, vol. 10(11), pages 1-12, October.
    3. L. E. Drinkwater & P. Wagoner & M. Sarrantonio, 1998. "Legume-based cropping systems have reduced carbon and nitrogen losses," Nature, Nature, vol. 396(6708), pages 262-265, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesús D. Peco & Pablo Higueras & Juan A. Campos & José M. Esbrí & Marta M. Moreno & Fabienne Battaglia-Brunet & Luisa M. Sandalio, 2021. "Abandoned Mine Lands Reclamation by Plant Remediation Technologies," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    2. Yao Kohou Donatien Guéablé & Youssef Bezrhoud & Haitam Moulay & Lhoussaine Moughli & Mohamed Hafidi & Mohamed El Gharouss & Khalil El Mejahed, 2021. "New Approach for Mining Site Reclamation Using Alternative Substrate Based on Phosphate Industry By-Product and Sludge Mixture," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    3. Frederick Gyasi Damptey & Klaus Birkhofer & Paul Kofi Nsiah & Enrique G. de la Riva, 2020. "Soil Properties and Biomass Attributes in a Former Gravel Mine Area after Two Decades of Forest Restoration," Land, MDPI, vol. 9(6), pages 1-18, June.
    4. Thobeka Pearl Makhathini & Joseph Kapuku Bwapwa & Sphesihle Mtsweni, 2023. "Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    5. Paula Godinho Ribeiro & Gabriel Caixeta Martins & Markus Gastauer & Ediu Carlos da Silva Junior & Diogo Corrêa Santos & Cecílio Frois Caldeira Júnior & Rosane Barbosa Lopes Cavalcante & Douglas Silva , 2022. "Spectral and Soil Quality Index for Monitoring Environmental Rehabilitation and Soil Carbon Stock in an Amazonian Sandstone Mine," Sustainability, MDPI, vol. 14(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    3. Muller, Adrian, 2006. "Sustainable Agriculture and the Production of Biomass for Energy Use," Working Papers in Economics 216, University of Gothenburg, Department of Economics, revised 01 Aug 2008.
    4. Lucas Contarato Pilon & Jordano Vaz Ambus & Elena Blume & Rodrigo Josemar Seminoti Jacques & José Miguel Reichert, 2023. "Citrus Orchards in Agroforestry, Organic, and Conventional Systems: Soil Quality and Functioning," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    5. Mousumi Ghosh & Waqar Ashiq & Hiteshkumar Bhogilal Vasava & Duminda N. Vidana Gamage & Prasanta K. Patra & Asim Biswas, 2021. "Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    6. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Reeson, Andrew & Measham, Thomas G. & Hosking, Karin, 2012. "Mining activity, income inequality and gender in regional Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(2), pages 1-12.
    8. Rhonda R. Janke & Daniel Menezes-Blackburn & Asma Al Hamdi & Abdul Rehman, 2024. "Organic Management and Intercropping of Fruit Perennials Increase Soil Microbial Diversity and Activity in Arid Zone Orchard Cropping Systems," Sustainability, MDPI, vol. 16(21), pages 1-15, October.
    9. Jouan, Julia & Heinrichs, Julia & Britz, Wolfgang & Pahmeyer, Christoph, 2019. "Legume production challenged by European policy coherence: a case-study approach from French and German dairy farms," 172nd EAAE Seminar, May 28-29, 2019, Brussels, Belgium 289765, European Association of Agricultural Economists.
    10. Tan, Hao & Sun, Aijun & Lau, Henry, 2013. "CO2 embodiment in China–Australia trade: The drivers and implications," Energy Policy, Elsevier, vol. 61(C), pages 1212-1220.
    11. John Foster & Liam Wagner & Liam Byrnes, 2014. "A Review of Distributed Generation for Rural and Remote Area Electrification," Energy Economics and Management Group Working Papers 3-2014, School of Economics, University of Queensland, Australia.
    12. Sanna Lötjönen & Markku Ollikainen, 2017. "Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(4), pages 283-312, December.
    13. Argiles, Josep M. & Brown, Nestor Duch, 2011. "A comparison of the economic and environmental performances of conventional and organic farming: evidence from financial statements," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 11(1), pages 1-18, January.
    14. Aravindakshan, Sreejith & Sherief, Aliyaru Kunju, 2010. "The wanted change against climate change: assessing the role of organic farming as an adaptation strategy," MPRA Paper 27205, University Library of Munich, Germany.
    15. Susanne Wiesner & Alison J. Duff & Ankur R. Desai & Kevin Panke-Buisse, 2020. "Increasing Dairy Sustainability with Integrated Crop–Livestock Farming," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    16. David A. Fleming & Thomas G. Measham, 2015. "Local economic impacts of an unconventional energy boom: the coal seam gas industry in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), pages 78-94, January.
    17. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    18. Alessio Miatto & Nargessadat Emami & Kylie Goodwin & James West & Mohammad Sadegh Taskhiri & Thomas Wiedmann & Heinz Schandl, 2024. "Australia's circular economy metrics and indicators," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 216-231, April.
    19. Ribaudo, Marc & Hansen, LeRoy T. & Hellerstein, Daniel & Greene, Catherine R., 2008. "The Use of Markets To Increase Private Investment in Environmental Stewardship," Economic Research Report 56473, United States Department of Agriculture, Economic Research Service.
    20. Tiziano Gomiero, 2013. "Alternative Land Management Strategies and Their Impact on Soil Conservation," Agriculture, MDPI, vol. 3(3), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3393-:d:241387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.