IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v5y2013i7p3009-3034d27128.html
   My bibliography  Save this article

Sustainability of US Organic Beef and Dairy Production Systems: Soil, Plant and Cattle Interactions

Author

Listed:
  • Aimee N. Hafla

    (United States Department of Agriculture †, Agriculture Research Service, Pasture Systems and Watershed Management Research Unit, Building 3702, Curtin Road, University Park, PA 16802, USA
    USDA is an equal opportunity provider and employer.)

  • Jennifer W. MacAdam

    (Utah State University, Department of Plants, Soils and Climate, 4820 Old Main Hill, Logan 84322, UT, USA)

  • Kathy J. Soder

    (United States Department of Agriculture †, Agriculture Research Service, Pasture Systems and Watershed Management Research Unit, Building 3702, Curtin Road, University Park, PA 16802, USA
    USDA is an equal opportunity provider and employer.)

Abstract

In 2010, the National Organic Program implemented a rule for the US stating that pasture must be a significant source of feed in organic ruminant systems. This article will focus on how the pasture rule has impacted the management, economics and nutritional value of products derived from organic ruminant systems and the interactions of grazing cattle with pasture forages and soils. The use of synthetic fertilizers is prohibited in organic systems; therefore, producers must rely on animal manures, compost and cover crops to increase and maintain soil nitrogen content. Rotational and strip grazing are two of the most common grazing management practices utilized in grazing ruminant production systems; however, these practices are not exclusive to organic livestock producers. For dairy cattle, grazing reduces foot and leg problems common in confinement systems, but lowers milk production and exposes cows to parasites that can be difficult to treat without pharmaceuticals. Organic beef cattle may still be finished in feedlots for no more than 120 days in the US, but without growth hormones and antibiotics, gains may be reduced and illnesses increased. Grazing reduces the use of environmentally and economically costly concentrate feeds and recycles nutrients back to the soil efficiently, but lowers the rate of beef liveweight gain. Increased use of pasture can be economically, environmentally and socially sustainable if forage use efficiency is high and US consumers continue to pay a premium for organic beef and dairy products.

Suggested Citation

  • Aimee N. Hafla & Jennifer W. MacAdam & Kathy J. Soder, 2013. "Sustainability of US Organic Beef and Dairy Production Systems: Soil, Plant and Cattle Interactions," Sustainability, MDPI, vol. 5(7), pages 1-26, July.
  • Handle: RePEc:gam:jsusta:v:5:y:2013:i:7:p:3009-3034:d:27128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/5/7/3009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/5/7/3009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McBride, William D. & Greene, Catherine R., 2009. "Characteristics, Costs, and Issues for Organic Dairy Farming," Economic Research Report 55952, United States Department of Agriculture, Economic Research Service.
    2. Derek H. Lynch & Rod MacRae & Ralph C. Martin, 2011. "The Carbon and Global Warming Potential Impacts of Organic Farming: Does It Have a Significant Role in an Energy Constrained World?," Sustainability, MDPI, vol. 3(2), pages 1-41, January.
    3. Thomassen, M.A. & van Calker, K.J. & Smits, M.C.J. & Iepema, G.L. & de Boer, I.J.M., 2008. "Life cycle assessment of conventional and organic milk production in the Netherlands," Agricultural Systems, Elsevier, vol. 96(1-3), pages 95-107, March.
    4. L. E. Drinkwater & P. Wagoner & M. Sarrantonio, 1998. "Legume-based cropping systems have reduced carbon and nitrogen losses," Nature, Nature, vol. 396(6708), pages 262-265, November.
    5. Gillespie, Jeffrey M. & Nehring, Richard F. & Hallahan, Charles B. & Sandretto, Carmen L., 2009. "Pasture-Based Dairy Systems: Who Are the Producers and Are Their Operations More Profitable than Conventional Dairies?," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(3), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zefu Gao & Qinyu Zhu & Haicheng Tao & Yiwen Jiao, 2023. "Grassland Health in Xilin Gol League from the Perspective of Machine Learning—Analysis of Grazing Intensity on Grassland Sustainability," Sustainability, MDPI, vol. 15(4), pages 1-31, February.
    2. Rebecca Buttinelli & Raffaele Cortignani & Gabriele Dono, 2021. "Financial sustainability in Italian Organic Farms: An analysis of the FADN Sample," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-32.
    3. Alon Tal, 2018. "Making Conventional Agriculture Environmentally Friendly: Moving beyond the Glorification of Organic Agriculture and the Demonization of Conventional Agriculture," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    4. Isabel Cristina Acosta-Balcazar & Jorge Quiroz-Valiente & Lorenzo Granados-Zurita & Emilio Manuel Aranda-Ibáñez & Edith Hernández-Nataren & Joaquín Alberto Rincón-Ramírez & Lorenzo Danilo Granados-Riv, 2022. "Effect of genotype, lactation and climatic factors on fatty acid profile of bovine milk," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 67(5), pages 167-175.
    5. Sita Rama Das & Martin Haigh & Sheila Chauhan, 2014. "Communicating Sustainability within Britain’s Hindu Community," Sustainability, MDPI, vol. 6(2), pages 1-23, February.
    6. Franklin Egan, J. & Hafla, Aimee & Goslee, Sarah, 2015. "Tradeoffs between production and perennial vegetation in dairy farming systems vary among counties in the northeastern U.S," Agricultural Systems, Elsevier, vol. 139(C), pages 17-28.
    7. Piotr Bórawski & Adam Pawlewicz & Andrzej Parzonko & Jayson, K. Harper & Lisa Holden, 2020. "Factors Shaping Cow’s Milk Production in the EU," Sustainability, MDPI, vol. 12(1), pages 1-15, January.
    8. Filippo Sgroi & Matteo Candela & Anna Maria Di Trapani & Mario Foderà & Riccardo Squatrito & Riccardo Testa & Salvatore Tudisca, 2015. "Economic and Financial Comparison between Organic and Conventional Farming in Sicilian Lemon Orchards," Sustainability, MDPI, vol. 7(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    2. Wolf, Christopher A. & Tonsor, Glynn T. & Olynk, Nicole J., 2011. "Understanding U.S. Consumer Demand for Milk Production Attributes," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 36(2), pages 1-17.
    3. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Jongeneel, Roel & Polman, Nico & van der Ham, Corinda, 2014. "Costs and benefits associated with the externalities generated by Dutch agriculture," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182705, European Association of Agricultural Economists.
    5. Gillespie, Jeffrey & Nehring, Richard, 2014. "Pasture-Based versus Conventional Milk Production: Where Is the Profit?," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 46(4), pages 543-558, November.
    6. Jan Willem Erisman & Allison Leach & Albert Bleeker & Brooke Atwell & Lia Cattaneo & James Galloway, 2018. "An Integrated Approach to a Nitrogen Use Efficiency (NUE) Indicator for the Food Production–Consumption Chain," Sustainability, MDPI, vol. 10(4), pages 1-29, March.
    7. Bonamigo, Andrei & Ferenhof, Helio Aisenberg & Forcellini, Fernando Antonio, 2017. "Dairy Ecosystem Barriers Exposed - A Case Study In A Family Production Unit At Western Santa Catarina, Brazil," Organizações Rurais e Agroindustriais/Rural and Agro-Industrial Organizations, Universidade Federal de Lavras, Departamento de Administracao e Economia, vol. 19(1), January.
    8. Law, Jonathan M., 2020. "Organic and Conventional Milk Production Practices and Costs between 2005 and 2016: Comparisons and Contrasts by Farm Size, Region and Pasture Use," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304615, Agricultural and Applied Economics Association.
    9. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    10. Tuomisto, H.L. & Hodge, I.D. & Riordan, P. & Macdonald, D.W., 2012. "Comparing energy balances, greenhouse gas balances and biodiversity impacts of contrasting farming systems with alternative land uses," Agricultural Systems, Elsevier, vol. 108(C), pages 42-49.
    11. Nehring, Richard & Gillespie, Jeffrey & Katchova, Ani L. & Hallahan, Charlie & Harris, J. Michael & Erickson, Ken, 2015. "What’s Driving U.S. Broiler Farm Profitability?," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 18(A), pages 1-20, July.
    12. Muller, Adrian, 2006. "Sustainable Agriculture and the Production of Biomass for Energy Use," Working Papers in Economics 216, University of Gothenburg, Department of Economics, revised 01 Aug 2008.
    13. Ledgard, Stewart F. & Wei, Sha & Wang, Xiaoqin & Falconer, Shelley & Zhang, Nannan & Zhang, Xiying & Ma, Lin, 2019. "Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations," Agricultural Water Management, Elsevier, vol. 213(C), pages 155-163.
    14. Lucas Contarato Pilon & Jordano Vaz Ambus & Elena Blume & Rodrigo Josemar Seminoti Jacques & José Miguel Reichert, 2023. "Citrus Orchards in Agroforestry, Organic, and Conventional Systems: Soil Quality and Functioning," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    15. Mathieu Lambotte & Stéphane de Cara & Catherine Brocas & Valentin Bellassen, 2021. "Carbon footprint and economic performance of dairy farms: the case of protected designation of origin dairy farms in France [Bilan carbone et performance économique des exploitations laitières : le," Post-Print hal-03021963, HAL.
    16. O'Brien, D. & Bohan, A. & McHugh, N. & Shalloo, L., 2016. "A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming," Agricultural Systems, Elsevier, vol. 148(C), pages 95-104.
    17. Mousumi Ghosh & Waqar Ashiq & Hiteshkumar Bhogilal Vasava & Duminda N. Vidana Gamage & Prasanta K. Patra & Asim Biswas, 2021. "Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    18. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    20. Thomassen, M.A. & Dolman, M.A. & van Calker, K.J. & de Boer, I.J.M., 2009. "Relating life cycle assessment indicators to gross value added for Dutch dairy farms," Ecological Economics, Elsevier, vol. 68(8-9), pages 2278-2284, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:5:y:2013:i:7:p:3009-3034:d:27128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.