IDEAS home Printed from https://ideas.repec.org/p/ags/eaa172/289765.html
   My bibliography  Save this paper

Legume production challenged by European policy coherence: a case-study approach from French and German dairy farms

Author

Listed:
  • Jouan, Julia
  • Heinrichs, Julia
  • Britz, Wolfgang
  • Pahmeyer, Christoph

Abstract

Legumes can contribute to a more sustainable agriculture by limiting N fertilisation, diversifying crop rotation and substituting imported protein-rich feed. However, their production remains low in the European Union, which had led to specific policies. For instance, following the reform of the Common Agricultural Policy, France established Voluntary Coupled Support (VCS) scheme for legumes. Germany did not introduce a VCS, but provides more favourable implementation of the Nitrates Directive (ND) for legumes by allowing spreading manure on these crops. Our study quantifies economic and environmental impacts of the VCS and measures of the ND affecting legume production in France and Germany. We employ the bio-economic model FarmDyn, parameterised for a typical dairy farm in France and Germany, to analyse different levels of VCS per hectare and to compare the French versus the German implementation of the ND. Results suggest that VCS leads to a significant increase in legume production. The implementation of the German ND can foster legume production due to the possibility of spreading manure on legumes. The policy induced increase in legume production is lower in the German farm due to higher opportunity costs of legumes. In both farms, the profit slightly increases but the share of VCS in the profit rises. Environmental indicators are overall improved. Thus, VCS, coupled with an adapted implementation of the Nitrate Directive, is an effective policy to foster environmental benefits from increased legume production. However, the effectiveness of these policies highly depends on the opportunity costs of legumes in each country.

Suggested Citation

  • Jouan, Julia & Heinrichs, Julia & Britz, Wolfgang & Pahmeyer, Christoph, 2019. "Legume production challenged by European policy coherence: a case-study approach from French and German dairy farms," 172nd EAAE Seminar, May 28-29, 2019, Brussels, Belgium 289765, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaa172:289765
    DOI: 10.22004/ag.econ.289765
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/289765/files/Jouan-Legume%20production%20challenged%20by%20European%20policy%20coherence-170_a.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.289765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jacquet, Florence & Butault, Jean-Pierre & Guichard, Laurence, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Ecological Economics, Elsevier, vol. 70(9), pages 1638-1648, July.
    2. Belhouchette, Hatem & Louhichi, Kamel & Therond, Olivier & Mouratiadou, Ioanna & Wery, Jacques & Ittersum, Martin van & Flichman, Guillermo, 2011. "Assessing the impact of the Nitrate Directive on farming systems using a bio-economic modelling chain," Agricultural Systems, Elsevier, vol. 104(2), pages 135-145, February.
    3. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    4. Britz, Wolfgang & van Ittersum, Martin K. & Oude Lansink, Alfons G.J.M. & Heckelei, Thomas, 2012. "Tools for Integrated Assessment in Agriculture. State of the Art and Challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(2), pages 1-26, August.
    5. Kupker, Bernd & Huttel, Silke & Kleinhanss, Werner & Offermann, Frank, 2006. "Assessing impacts of CAP reform in France and Germany," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 55(05-06), pages 1-11.
    6. Julia Jouan & Aude Ridier & Matthieu Carof, 2019. "Economic Drivers of Legume Production: Approached via Opportunity Costs and Transaction Costs," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    7. L. E. Drinkwater & P. Wagoner & M. Sarrantonio, 1998. "Legume-based cropping systems have reduced carbon and nitrogen losses," Nature, Nature, vol. 396(6708), pages 262-265, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Jouan & Julia Heinrichs & Wolfgang Britz & Christoph Pahmeyer, 2019. "Integrated assessment of legume production challenged by European policy interaction: a case-study approach from French and German dairy farms," Working Papers hal-02501428, HAL.
    2. Julia Jouan & Aude Ridier & Matthieu Carof, 2018. "SYNERGY: a bio economic model assessing the economic and environmental impacts of increased regional protein self-sufficiency," Post-Print hal-01937084, HAL.
    3. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    4. Yeh, D. Adeline & Gomez, Miguel I. & Lin Lawell, C.-Y. Cynthia, 2020. "Sustainable Pest Management Under Uncertainty: A Dynamic Bioeconomic Analysis of Lowbush Blueberry Production," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304326, Agricultural and Applied Economics Association.
    5. Britz, Wolfgang & Ciaian, Pavel & Gocht, Alexander & Kanellopoulos, Argyris & Kremmydas, Dimitrios & Müller, Marc & Petsakos, Athanasios & Reidsma, Pytrik, 2021. "A design for a generic and modular bio-economic farm model," Agricultural Systems, Elsevier, vol. 191(C).
    6. Grovermann, Christian & Schreinemachers, Pepijn & Berger, Thomas, 2015. "Evaluation of IPM adoption and financial instruments to reduce pesticide use in Thai agriculture using econometrics and agent-based modeling," 2015 Conference, August 9-14, 2015, Milan, Italy 211690, International Association of Agricultural Economists.
    7. El Ansari, Loubna & Chenoune, Roza & Yigezu, Yigezu A. & Komarek, Adam M. & Gary, Christian & Belhouchette, Hatem, 2023. "Intensification options in cereal-legume production systems generate trade-offs between sustainability pillars for farm households in northern Morocco," Agricultural Systems, Elsevier, vol. 212(C).
    8. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.
    9. Kragt, M.E. & Pannell, D.J. & McVittie, A. & Stott, A.W. & Vosough Ahmadi, B. & Wilson, P., 2016. "Improving interdisciplinary collaboration in bio-economic modelling for agricultural systems," Agricultural Systems, Elsevier, vol. 143(C), pages 217-224.
    10. Britz, Wolfgang & van Ittersum, Martin K. & Oude Lansink, Alfons G.J.M. & Heckelei, Thomas, 2012. "Tools for Integrated Assessment in Agriculture. State of the Art and Challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(2), pages 1-26, August.
    11. Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.
    12. Ricome, Aymeric & Affholder, François & Gérard, Françoise & Muller, Bertrand & Poeydebat, Charlotte & Quirion, Philippe & Sall, Moussa, 2017. "Are subsidies to weather-index insurance the best use of public funds? A bio-economic farm model applied to the Senegalese groundnut basin," Agricultural Systems, Elsevier, vol. 156(C), pages 149-176.
    13. Stefano Gaudino & Pytrik Reidsma & Argyris Kanellopoulos & Dario Sacco & Martin K. Van Ittersum, 2018. "Integrated Assessment of the EU’s Greening Reform and Feed Self-Sufficiency Scenarios on Dairy Farms in Piemonte, Italy," Agriculture, MDPI, vol. 8(9), pages 1-27, September.
    14. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    15. Jouan, Julia & Ridier, Aude & Carof, Matthieu, 2020. "SYNERGY: A regional bio-economic model analyzing farm-to-farm exchanges and legume production to enhance agricultural sustainability," Ecological Economics, Elsevier, vol. 175(C).
    16. Chopin, Pierre & Doré, Thierry & Guindé, Loïc & Blazy, Jean-Marc, 2015. "MOSAICA: A multi-scale bioeconomic model for the design and ex ante assessment of cropping system mosaics," Agricultural Systems, Elsevier, vol. 140(C), pages 26-39.
    17. Michael Oster & Henry Reyer & Elizabeth Ball & Dario Fornara & John McKillen & Kristina Ulrich Sørensen & Hanne Damgaard Poulsen & Kim Andersson & Daniel Ddiba & Arno Rosemarin & Linda Arata & Paolo S, 2018. "Bridging Gaps in the Agricultural Phosphorus Cycle from an Animal Husbandry Perspective—The Case of Pigs and Poultry," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    18. Houda Mazhoud & Fraj Chemak & Hatem Belhouchette & Roza Chenoune, 2022. "A Bio-Economic Model for Improving Irrigated Durum Wheat Performance and Regional Profits under Mediterranean Conditions," Agriculture, MDPI, vol. 12(5), pages 1-25, April.
    19. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Wang Cheng, 2022. "The Impact of Enterprise Digital Transformation on Service Innovation Performance -- Taking the construction enterprises in the Yangtze River Delta as the research object," International Journal of Science and Business, IJSAB International, vol. 14(1), pages 155-172.

    More about this item

    Keywords

    Agricultural and Food Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaa172:289765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.