IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i8p1317-d1452639.html
   My bibliography  Save this article

Oilseed Rape Yield Prediction from UAVs Using Vegetation Index and Machine Learning: A Case Study in East China

Author

Listed:
  • Hao Hu

    (Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
    Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China)

  • Yun Ren

    (Huzhou Agricultural Science and Technology Development Center, Huzhou 313000, China)

  • Hongkui Zhou

    (Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
    Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China)

  • Weidong Lou

    (Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
    Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China)

  • Pengfei Hao

    (Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)

  • Baogang Lin

    (Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)

  • Guangzhi Zhang

    (Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China)

  • Qing Gu

    (Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
    Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China)

  • Shuijin Hua

    (Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)

Abstract

Yield prediction is an important agriculture management for crop policy making. In recent years, unmanned aerial vehicles (UAVs) and spectral sensor technology have been widely used in crop production. This study aims to evaluate the ability of UAVs equipped with spectral sensors to predict oilseed rape yield. In an experiment, RGB and hyperspectral images were captured using a UAV at the seedling (S1), budding (S2), flowering (S3), and pod (S4) stages in oilseed rape plants. Canopy reflectance and spectral indices of oilseed rape were extracted and calculated from the hyperspectral images. After correlation analysis and principal component analysis (PCA), input spectral indices were screened to build yield prediction models using random forest regression (RF), multiple linear regression (MLR), and support vector machine regression (SVM). The results showed that UAVs equipped with spectral sensors have great potential in predicting crop yield at a large scale. Machine learning approaches such as RF can improve the accuracy of yield models in comparison with traditional methods (e.g., MLR). The RF-based training model had the highest determination coefficient (R 2 ) (0.925) and lowest relative root mean square error (RRMSE) (5.91%). In testing, the MLR-based model had the highest R 2 (0.732) and lowest RRMSE (11.26%). Moreover, we found that S2 was the best stage for predicting oilseed rape yield compared with the other growth stages. This study demonstrates a relatively accurate prediction for crop yield and provides valuable insight for field crop management.

Suggested Citation

  • Hao Hu & Yun Ren & Hongkui Zhou & Weidong Lou & Pengfei Hao & Baogang Lin & Guangzhi Zhang & Qing Gu & Shuijin Hua, 2024. "Oilseed Rape Yield Prediction from UAVs Using Vegetation Index and Machine Learning: A Case Study in East China," Agriculture, MDPI, vol. 14(8), pages 1-15, August.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1317-:d:1452639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/8/1317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/8/1317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaul, Monisha & Hill, Robert L. & Walthall, Charles, 2005. "Artificial neural networks for corn and soybean yield prediction," Agricultural Systems, Elsevier, vol. 85(1), pages 1-18, July.
    2. Marzhan Sadenova & Nail Beisekenov & Petar Sabev Varbanov & Ting Pan, 2023. "Application of Machine Learning and Neural Networks to Predict the Yield of Cereals, Legumes, Oilseeds and Forage Crops in Kazakhstan," Agriculture, MDPI, vol. 13(6), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    2. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    3. Srinivasagan N. Subhashree & C. Igathinathane & Adnan Akyuz & Md. Borhan & John Hendrickson & David Archer & Mark Liebig & David Toledo & Kevin Sedivec & Scott Kronberg & Jonathan Halvorson, 2023. "Tools for Predicting Forage Growth in Rangelands and Economic Analyses—A Systematic Review," Agriculture, MDPI, vol. 13(2), pages 1-30, February.
    4. Jiménez, Daniel & Cock, James & Jarvis, Andy & Garcia, James & Satizábal, Héctor F. & Damme, Patrick Van & Pérez-Uribe, Andrés & Barreto-Sanz, Miguel A., 2011. "Interpretation of commercial production information: A case study of lulo (Solanum quitoense), an under-researched Andean fruit," Agricultural Systems, Elsevier, vol. 104(3), pages 258-270, March.
    5. Xu, Chang & Katchova, Ani L., 2019. "Predicting Soybean Yield with NDVI Using a Flexible Fourier Transform Model," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 51(3), pages 402-416, August.
    6. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2021. "Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data," Land, MDPI, vol. 10(6), pages 1-21, June.
    7. García-Alonso, Carlos R. & Torres-Jiménez, Mercedes & Hervás-Martínez, César, 2010. "Income prediction in the agrarian sector using product unit neural networks," European Journal of Operational Research, Elsevier, vol. 204(2), pages 355-365, July.
    8. Pourmohammadali, Behrooz & Hosseinifard, Seyed Javad & Hassan Salehi, Mohammad & Shirani, Hossein & Esfandiarpour Boroujeni, Isa, 2019. "Effects of soil properties, water quality and management practices on pistachio yield in Rafsanjan region, southeast of Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 894-902.
    9. Sergey V. Pashkov & Eduard Z. Imashev & Gaukhar K. Baubekova & Kulyash D. Kaimuldinova & Yerkin A. Tokpanov & Gulshat Z. Nurgaliyeva & Gaini K. Baimukasheva & Rabiga N. Kenzhebay & Soltanbek K. Kassen, 2024. "Ecological–Economical and Ethno-Cultural Determinants of the Development of Organic Farming in Kazakhstan," Sustainability, MDPI, vol. 16(10), pages 1-19, May.
    10. Kelvin López-Aguilar & Adalberto Benavides-Mendoza & Susana González-Morales & Antonio Juárez-Maldonado & Pamela Chiñas-Sánchez & Alvaro Morelos-Moreno, 2020. "Artificial Neural Network Modeling of Greenhouse Tomato Yield and Aerial Dry Matter," Agriculture, MDPI, vol. 10(4), pages 1-14, April.
    11. Jules F. Cacho & Jeremy Feinstein & Colleen R. Zumpf & Yuki Hamada & Daniel J. Lee & Nictor L. Namoi & DoKyoung Lee & Nicholas N. Boersma & Emily A. Heaton & John J. Quinn & Cristina Negri, 2023. "Predicting Biomass Yields of Advanced Switchgrass Cultivars for Bioenergy and Ecosystem Services Using Machine Learning," Energies, MDPI, vol. 16(10), pages 1-16, May.
    12. Bazrafshan, Ommolbanin & Ehteram, Mohammad & Moshizi, Zahra Gerkaninezhad & Jamshidi, Sajad, 2022. "Evaluation and uncertainty assessment of wheat yield prediction by multilayer perceptron model with bayesian and copula bayesian approaches," Agricultural Water Management, Elsevier, vol. 273(C).
    13. Emerson Rodolfo Abraham & João Gilberto Mendes dos Reis & Oduvaldo Vendrametto & Pedro Luiz de Oliveira Costa Neto & Rodrigo Carlo Toloi & Aguinaldo Eduardo de Souza & Marcos de Oliveira Morais, 2020. "Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production," Agriculture, MDPI, vol. 10(10), pages 1-18, October.
    14. Taheri-Rad, Alireza & Khojastehpour, Mehdi & Rohani, Abbas & Khoramdel, Surur & Nikkhah, Amin, 2017. "Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks," Energy, Elsevier, vol. 135(C), pages 405-412.
    15. Szulczewski, Wieslaw & Zyromski, Andrzej & Biniak-Pieróg, Malgorzata & Machowczyk, Anna, 2010. "Modelling of the effect of dry periods on yielding of spring barley," Agricultural Water Management, Elsevier, vol. 97(5), pages 587-595, May.
    16. Renato Domiciano Silva Rosado & Cosme Damião Cruz & Leiri Daiane Barili & José Eustáquio de Souza Carneiro & Pedro Crescêncio Souza Carneiro & Vinicius Quintão Carneiro & Jackson Tavela da Silva & Moy, 2020. "Artificial Neural Networks in the Prediction of Genetic Merit to Flowering Traits in Bean Cultivars," Agriculture, MDPI, vol. 10(12), pages 1-11, December.
    17. Kuruguntu Mohan Krithika & Nachimuthu Maheswari & Manickam Sivagami, 2022. "Models for feature selection and efficient crop yield prediction in the groundnut production," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 68(3), pages 131-141.
    18. Sebastian C. Ibañez & Christopher P. Monterola, 2023. "A Global Forecasting Approach to Large-Scale Crop Production Prediction with Time Series Transformers," Agriculture, MDPI, vol. 13(9), pages 1-27, September.
    19. Jalilov, Shokhrukh-Mirzo & Rahman, Wakilur & Palash, Salauddin & Jahan, Hasneen & Mainuddin, Mohammed & Ward, Frank A., 2022. "Exploring strategies to control the cost of food security: Evidence from Bangladesh," Agricultural Systems, Elsevier, vol. 196(C).
    20. Omolola M. Adisa & Joel O. Botai & Abiodun M. Adeola & Abubeker Hassen & Christina M. Botai & Daniel Darkey & Eyob Tesfamariam, 2019. "Application of Artificial Neural Network for Predicting Maize Production in South Africa," Sustainability, MDPI, vol. 11(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1317-:d:1452639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.