IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v204y2010i2p355-365.html
   My bibliography  Save this article

Income prediction in the agrarian sector using product unit neural networks

Author

Listed:
  • García-Alonso, Carlos R.
  • Torres-Jiménez, Mercedes
  • Hervás-Martínez, César

Abstract

European Union financial subsidies in the agrarian sector are directly related to maintaining a sustainable farm income, so its determination using, for example, the farm gross margin is a basic element in agrarian programs for sustainable development. Using this tool, it is possible the identification of the agrarian structures that need financial support and to what extent it is needed. However, the process of farm gross margin determination is complicated and expensive because it is necessary to find the value of all the inputs consumed and outputs produced. Considering the circumstances mentioned, the objectives of this research were to: (1) select a representative and reduced set of easy-to-collect descriptive variables to estimate the gross margin of a group of olive-tree farms in Andalusia; (2) investigate if artificial neural network models (ANN) with two different types of basis functions (sigmoidal and product-units) could effectively predict the gross margin of olive-tree farms; (3) compare the effectiveness of multiple linear, quadratic and robust regression models versus ANN; and (4) validate the best mathematical model obtained for gross margin prediction by analysing realistic farm and farmer scenarios. Results from ANN models, specially the product-unit ones, have provided the most accurate gross margin predictions.

Suggested Citation

  • García-Alonso, Carlos R. & Torres-Jiménez, Mercedes & Hervás-Martínez, César, 2010. "Income prediction in the agrarian sector using product unit neural networks," European Journal of Operational Research, Elsevier, vol. 204(2), pages 355-365, July.
  • Handle: RePEc:eee:ejores:v:204:y:2010:i:2:p:355-365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00672-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadras, Victor & Roget, David & Krause, Mike, 2003. "Dynamic cropping strategies for risk management in dry-land farming systems," Agricultural Systems, Elsevier, vol. 76(3), pages 929-948, June.
    2. Grznar, John & Prasad, Sameer & Tata, Jasmine, 2007. "Neural networks and organizational systems: Modeling non-linear relationships," European Journal of Operational Research, Elsevier, vol. 181(2), pages 939-955, September.
    3. Amores, Antonio F. & Contreras, Ignacio, 2009. "New approach for the assignment of new European agricultural subsidies using scores from data envelopment analysis: Application to olive-growing farms in Andalusia (Spain)," European Journal of Operational Research, Elsevier, vol. 193(3), pages 718-729, March.
    4. Pacheco, Joaquín & Casado, Silvia & Núñez, Laura, 2009. "A variable selection method based on Tabu search for logistic regression models," European Journal of Operational Research, Elsevier, vol. 199(2), pages 506-511, December.
    5. Meiri, Ronen & Zahavi, Jacob, 2006. "Using simulated annealing to optimize the feature selection problem in marketing applications," European Journal of Operational Research, Elsevier, vol. 171(3), pages 842-858, June.
    6. Kaul, Monisha & Hill, Robert L. & Walthall, Charles, 2005. "Artificial neural networks for corn and soybean yield prediction," Agricultural Systems, Elsevier, vol. 85(1), pages 1-18, July.
    7. García-Alonso, Carlos R. & Guardiola, Jorge & Hervás-Martínez, César, 2009. "Logistic evolutionary product-unit neural networks: Innovation capacity of poor Guatemalan households," European Journal of Operational Research, Elsevier, vol. 195(2), pages 543-551, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carravilla, M. A. & Oliveira, J. F., 2013. "Operations Research in Agriculture: Better Decisions for a Scarce and Uncertain World," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 5(2), pages 1-10, June.
    2. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    3. Ali Taghi-Molla & Masoud Rabbani & Mohammad Hosein Karimi Gavareshki & Ehsan Dehghani, 2020. "Safety improvement in a gas refinery based on resilience engineering and macro-ergonomics indicators: a Bayesian network–artificial neural network approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 641-654, June.
    4. Sevim, Cuneyt & Oztekin, Asil & Bali, Ozkan & Gumus, Serkan & Guresen, Erkam, 2014. "Developing an early warning system to predict currency crises," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1095-1104.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    2. Fouskakis, D., 2012. "Bayesian variable selection in generalized linear models using a combination of stochastic optimization methods," European Journal of Operational Research, Elsevier, vol. 220(2), pages 414-422.
    3. Unler, Alper & Murat, Alper, 2010. "A discrete particle swarm optimization method for feature selection in binary classification problems," European Journal of Operational Research, Elsevier, vol. 206(3), pages 528-539, November.
    4. Paz, Alexander & Arteaga, Cristian & Cobos, Carlos, 2019. "Specification of mixed logit models assisted by an optimization framework," Journal of choice modelling, Elsevier, vol. 30(C), pages 50-60.
    5. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    6. Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
    7. Beltrán-Esteve, Mercedes, 2013. "Assessing technical efficiency in traditional olive grove systems: a directional metadistance function approach," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 13(02), pages 1-24, December.
    8. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    9. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    10. Vasile Burja, 2011. "Regional Disparities Of Agricultural Performance In Romania," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 1(13), pages 1-12.
    11. Minviel, Jean Joseph & De Witte, Kristof, 2017. "The influence of public subsidies on farm technical efficiency: A robust conditional nonparametric approach," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1112-1120.
    12. Mercedes Beltrán-Esteve & José Gómez-Limón & Andrés Picazo-Tadeo & Ernest Reig-Martínez, 2014. "A metafrontier directional distance function approach to assessing eco-efficiency," Journal of Productivity Analysis, Springer, vol. 41(1), pages 69-83, February.
    13. Pacheco, Joaquín & Casado, Silvia & Porras, Santiago, 2013. "Exact methods for variable selection in principal component analysis: Guide functions and pre-selection," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 95-111.
    14. Kenichi Kashiwagi & Hajime Kamiyama, 2023. "Effect of adoption of organic farming on technical efficiency of olive-growing farms: empirical evidence from West Bank of Palestine," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-28, December.
    15. Hao Hu & Yun Ren & Hongkui Zhou & Weidong Lou & Pengfei Hao & Baogang Lin & Guangzhi Zhang & Qing Gu & Shuijin Hua, 2024. "Oilseed Rape Yield Prediction from UAVs Using Vegetation Index and Machine Learning: A Case Study in East China," Agriculture, MDPI, vol. 14(8), pages 1-15, August.
    16. Ligia Alba Melo-Becerra & Antonio José Orozco-Gallo, 2017. "Technical efficiency for Colombian small crop and livestock farmers: A stochastic metafrontier approach for different production systems," Journal of Productivity Analysis, Springer, vol. 47(1), pages 1-16, February.
    17. Srijita Ghosh & Kausik Gupta, 2023. "Dynamic Analysis of Watershed Management and Sustainable Agriculture in Dryland Regions: A Case Study of Purulia District, West Bengal," Review of Development and Change, , vol. 28(2), pages 207-244, December.
    18. Anzanello, Michel J. & Albin, Susan L. & Chaovalitwongse, Wanpracha A., 2012. "Multicriteria variable selection for classification of production batches," European Journal of Operational Research, Elsevier, vol. 218(1), pages 97-105.
    19. Srinivasagan N. Subhashree & C. Igathinathane & Adnan Akyuz & Md. Borhan & John Hendrickson & David Archer & Mark Liebig & David Toledo & Kevin Sedivec & Scott Kronberg & Jonathan Halvorson, 2023. "Tools for Predicting Forage Growth in Rangelands and Economic Analyses—A Systematic Review," Agriculture, MDPI, vol. 13(2), pages 1-30, February.
    20. Peng, Hongjun & Pang, Tao, 2019. "Optimal strategies for a three-level contract-farming supply chain with subsidy," International Journal of Production Economics, Elsevier, vol. 216(C), pages 274-286.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:204:y:2010:i:2:p:355-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.